
International Journal of Science and Engineering Applications (IJSEA)

Volume 1 Issue 1, 2012

www.ijsea.com 75

A DATA FLOW BASED NOVEL TESTING STRATEGY

FOR UNIT TESTING OF OBJECT ORIENTED

SOFTWARE

S. Suguna Mallika

Department of CSE,

CVR College of Engineering,

Hyderabad, India.

J. Vamsi V. Krishna

Department of IT,

CVR College of Engineering,

Hyderabad, India.

P.Amulya Sri

Department of CSE,

CVR College of Engineering,

Hyderabad, India.

Abstract: Uncovering errors during unit testing only, lessens the probability of the propagation of errors to other phases in a

large number. While this fact is applied to object oriented software, it is understood that the fundamental units with object

oriented software are precisely the classes and hence the classes need to be thoroughly tested to accomplish unit testing. Testing

of a class is analogous to testing the methods defined as part of the class. While it is known that the various methodologies to

testing conventional software are path testing, transaction flow testing, data flow testing et. al, an attempt has been made in the

current work to use the data flow testing technique partially to come up with a novel proposal so as to help the independent unit

tester decide on the most important methods for testing within the class. The strategy would assist the tester in deciding on the

priority of methods to be tested and thereby save on the testing effort.

Keywords: data flow testing, unit testing, OO testing, testing strategy, du pairs

1. INTRODUCTION
In the industry it is not an uncommon sight that

testing has to be done frequently on every new release of

the software. While we conduct regression tests in order to

ensure that the existing functionality does not get affected

there is a continuous pursuit to optimize the testing effort

and time. One way to optimize the testing time is to

execute lesser number of test cases while simultaneously

achieving the same correctness of software as with running

all the test cases. For unit testing Object Oriented Software

an attempt has been made to come up with a strategy to test

the individual classes. Performing Unit testing on classes is

analogous to performing the individual methods testing

which have been defined in the class.

 Running every test case for all the methods

would be quite time consuming when there is an urgency to

determine the health of the class. In such contexts if the

most important methods out of all the methods could be

prioritized then those high priority methods could be

subjected to full logic coverage testing while the rest of

them could be subjected to some black box testing

techniques like Equivalence Partitioning, Boundary Value

Analysis etc.

2. PROPOSED STRATEGY
The proposal is that all possible du-chaining of the

data members defined in the class is done. Then a method

which is the most repeated in the majority of the du chains

is assigned a high priority factor and is subjected to logic

coverage testing. The remaining sequences of methods are

tested under normal conditions using state based testing

techniques applying on the constraints of the object’s state.

For arriving at assigning priority of the methods, i.e to

understand the most important methods of all, an algorithm

has been proposed. The algorithm comprises of the

following steps:

Step 1: def-use pairs of all the data members defined

in the class are made.

Note: A def-use pair corresponds to the listing of a

pair of line numbers where the first number indicates the

line of occurrence of the definition of the variable and the

second number indicates the line number where usage of

the variable is seen without the variable getting killed in

between.

Step 2: The pairs of line numbers are mapped to

method names in which the line numbers are occurring thus

arriving with the set of method names in which the

definition of a data member is occurring and the method

name in which it is being used subsequently.

Step 3: Now an individual counter is maintained

against each method and du pairs of methods is observed.

Step 4: With the occurrence of each method in the

listing, the counter against that corresponding method is

incremented.

Step 5: Step 4 is repeated until all the methods listed

in the du pairs are exhausted.

International Journal of Science and Engineering Applications (IJSEA)

Volume 1 Issue 1, 2012

www.ijsea.com 76

Step 6: Now for each of the methods a table is

prepared with the final counter value against it.

Step 7: The table is sorted based on the counter value

for each method.

Step 8: Starting with the maximum counter value

priority is assigned in the increasing order. I.e method with

the maximum counter value is assigned a priority of 1 and

so on.

Step 9: If more than one method arrive at the same

counter value same priority is assigned to both the methods.

Step 10: After assigning the priority the method with

the highest priority is subjected to full logic coverage

testing while the other methods are subjected to

equivalence partitioning and boundary value analysis

testing.

3. CASE STUDY
The above algorithm has been manually traced on a

sample case study i.e a stack array class under

consideration. Code for the Stack Array Class which has

methods like push, pop, top, peek, isEmpty, isFull, getSize.

The sample code for the class written is as follows:

1.public class StackArray {

2.

3. private int[] stackElements;

4. private int topOfStack;

5. private int capacity;

6. private int size;

7.

8.

9. public StackArray(){

10. this(30);

11. }

12.

13. @SuppressWarnings("unchecked")

14. public StackArray (int capacity) {

15. this.capacity = capacity;

16. size = 0;

17. topOfStack = -1;

18. stackElements = (int[]) new

Object[capacity];

19. }

20.

21. @Override

22. public boolean isEmpty() {

23.

24. return size == 0;

25. }

26.

27. @Override

28. public boolean isFull() {

29.

30. return size == capacity;

31. }

32.

33. @Override

34. public void push(int dataIn) throws

35.StackOverflowException {

36.

37. if(isFull())

38. throw new StackOverflowException();

40. topOfStack = topOfStack +1;

41. stackElements[topOfStack] = dataIn;

42. ++size;

43.

44. }

45.

46. @Override

47. public int pop() throws

StackUnderflowException {

48.

49. if(isEmpty())

50.throw new StackUnderflowException();

51.

52.int dataOut =stackElements[topOfStack];

53. topOfStack = topOfStack -1;

54. --size;

55. return dataOut;

56. }

57. @Override

58.public int peek() throws

StackUnderflowException{

59.

60.if(isEmpty())

61.throw new StackUnderflowException();

62.

63. return stackElements[topOfStack];

64. }

65.

66. @Override

67. public int getSize() {

68.

69. return size;

70. }

71. }

Computation of the DU Pairs for each data member defined

in the class:

The first number specifies the line of occurrence of the

definition of the data member and the second line signifies

the usage of the data member. On the right hand side is the

listing of the method in which the definition has first

appeared followed by the method name in which the

subsequent usage has occurred.

International Journal of Science and Engineering Applications (IJSEA)

Volume 1 Issue 1, 2012

www.ijsea.com 77

For data member StackElements :

(41,52) – (push(),pop())

(41,63) – (push(), peek())

For data member topOfStack :

(17,40) – (StackArray(), push())

(40,41) - (push(), push())

(40,52) – (push(), pop())

(40,53) – (push(), pop())

(53,63)- (pop(), peek())

For data member size :

(16,24) – (StackArray(),isEmpty())

(16,30) – (StackArray(),isFull())

(16,42) – (StackArray(),push())

(42,54) – (push(), pop())

(54,69) – (pop(), getSize())

For data member capacity :

(15,18) – (StackArray(),StackArray())

(15,30) – (StackArray(),isFull())

4. RESULT ANALYSIS
Table 1: Priority Computation Table:

S.No Method Name Count Priority

1 StackArray 7 2

2 push 9 1

3 pop 6 3

4 isFull 2 4

5 isEmpty 1 5

6 getSize 1 5

7 peek 2 4

After the priority computation for each of the methods, as

per the strategy the method push () has to undergo full logic

coverage testing. And the remaining methods would be

subjected to Equivalence Partitioning or Boundary value

Analysis testing techniques.

5. RELATED WORK
Testing Object Oriented Software is an area where

currently lot of research is going on. However it is a

common observation that many of the techniques resort to

high complexity algorithms [3, 4, 6, 7 and 9]. They are

often difficult to implement and execute when in times of

emergency to check the health of the class. Our technique

is based out on employing a simpler algorithmic approach

to find out the most important focus area in the class and

thus help the tester with subtle inputs to quickly assess the

health of the class.

6. CONCLUSIONS
By following this strategy, the following drawbacks are

overcome which are present with the existing strategies:

 Computational complexity of techniques like symbolic

execution and automated deduction.

 Laborious time involved with robust testing

techniques.

 The drawback of model-driven testing is that the test

is only as good as the model and we know from

practical experience that models are seldom complete

and most often inconsistent. This again is an approach

which is theoretically appealing but does not hold up

in practice.

 This strategy helps in saving testing time while

delivering quality software.

7. ACKNOWLEDGEMENTS
Our sincere thanks to Mr.B.Vikranth, Associate

Professor, Department of IT, CVR College of Engineering

for his inundated support all through in the development of

this paper.

8. REFERENCES
[1] Roger S. Pressman, Software Engineering A

Practitioner’s Approach, Seventh Edition, McGraw-

Hill Int’l Edition.

[2] Boris Beizer, Software Testing Techniques, Second

Edition, International Thomson Computer Press, 1990.

[3] Harry M. Sneed, “Testing Object Oriented Software

Systems”, Proceeding ETOOS '10 Proceedings of the

1st Workshop on Testing Object-Oriented Systems

ACM New York, NY, USA

[4] Ugo Buy, Alessandro Orso and Mauro Pezze,

“Automated Testing of Classes” ISSTA ’00, ACM,

Portland, Oregon.

[5] Ilinca Ciupa, Andreas Leitner, Manuel Oriol, and

Bertrand Meyer, “ARTOO: Adaptive Random Testing

for ObjectOriented Software”, ICSE’08, May 10–18,

2008, Leipzig, Germany, ACM

9781605580791/08/05.

International Journal of Science and Engineering Applications (IJSEA)

Volume 1 Issue 1, 2012

www.ijsea.com 78

[6] Lucas and Serpa Silva, “Evolutionary Testing of

Object-Oriented Software” ACM SAC’10, March 22-

26, 2010, Sierre, Switzerland, 978-1-60558-638-

0/10/03.

[7] HUO YAN CHEN, T. H. TSE and T. Y.

CHEN,”TACCLE: A Methodology for Object-

Oriented Software Testing at the Class and Cluster

Levels” ACM Transactions on Software Engineering

and Methodology, Vol. 10, No. 4, January 2001, Pages

56–109.

[8] S.R.Chidamber and C.F.Kemerer, “A Metrics Suite

for Object Oriented Design”, IEEE Transactions

on Software Engineering, Vol. 20, No. 6, 1994, pp.

476-493.

[9] Mauro Pezze and Michal Young, “Testing Object

Oriented Software”, IEEE Proceedings of the 26th

international conference on Software

Engineering(ICSE’ 04).

[10] http://www.guru99.com/software-testing-life-

ycle.html.

