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Abstract: In recent years, research has moved from traditional query processing (e.g., Selection, Nearest Neighbor (NN), Top-k, 

Skyline), to reverse query processing (e.g., Reverse NN, Reverse Top-k, Reverse Skyline), to maximal reverse query processing (e.g., 

find spatial points that maximize the number of Reverse NNs), and so on. This paper considers the Smallest Set Reverse Selection 

Queries Problem also known as the Multiple Tuple Design Problem: Given a set of selection queries with conjunctive conditions, 

where the task is to create the smallest set of tuples such that each query returns at least one of these tuples. The problem is an 

interesting variant of the Maximal Reverse Selection Queries Problem (also referred to as the Tuple Design Problem) introduced by 

Miah et al. (2016). The paper shows that the problem is NP-Complete and develops approximation algorithms with provable 

approximation guarantees, as well as carefully designed heuristics that work well in practice. The paper also designs efficient exact 

algorithm that are feasible for moderate instances. It provides extensive experiments that demonstrate the effectiveness of the proposed 

algorithms. 
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1. INTRODUCTION 
Significant research has been done in the area of traditional 

query processing, where a query and a database (set of tuples) 

are given, and the task is to return all tuples in the database 

that satisfy the query. Different query models have been 

developed for query processing including “selection queries” 

to find the set of tuples that satisfy a selection condition, 

“kNN queries” to find the set of k tuples that are closes to a 

query tuple, “skyline queries” to find all tuples that are not 

dominated by any other tuple), “top-k queries” to find the top-

k tuples , and so on. 

Research has moved in recent years to the complementary 

area of reverse query processing, where in the database (set of 

tuples), a query log, and a potential tuple are given, and the 

task is to find all queries in the query log that return the given 

tuple.  The reverse query processing also has been studied for 

a variety of query models, such as “reverse kNN”, “reverse 

top-k”, “reverse skyline”, and so on. While traditional query 

processing applications focus on the customers or end users, 

reverse query processing applications focus on the 

manufacturers or sellers, e.g., helping manufacturer identify 

products that are most preferred by customers. 

Maximal reverse query processing has been studied as well 

for skyline (Li et al. 2007; Li et al. 2006) and kNN (Cabello et 

al. 2005; Wong et al. 2009) queries with numeric attributes.  

Most recently, an interesting related area of maximal reverse 

selection queries problem has been introduced. Given a 

database (set of tuples) and a query log, the task is to 

construct a new tuple such that the set of queries in the query 

log that return the new tuple is larger than for any other tuple 

in the database. This focused on the maximal reverse queries 

problem on the important class of “selection queries” over 

Boolean databases. Assume that a Boolean tuple (e.g., a new 

product) needs to be designed by selecting a subset of 

Boolean features (or attributes) from a large set of possible 

features. Assume that we are given a set of user preferences in 

the form of a query log (or workload) of user queries, where 

each query is a conjunction of positive or negative preferences 

for some of the features (e.g., “Select * from Database where 

a1=0 and a4=1 and a6=1”). The problem also known as Tuple 

Design (TD) or Single Tuple Design (STD) Problem (Miah et 

al. 2016). 

This paper focus on an interesting variant of the Single Tuple 

Design problem. Instead of just designing a single tuple, we 

may be interested in creating a minimum number of tuples 

that collectively satisfy all queries in the query log. This is 

referred to as the Multiple Tuple Design (MTD) problem. 

MTD (Multiple Tuple Design) Problem: Given a query log Q 

consisting of conjunctive selection queries over Boolean 

attributes, construct the smallest set T of Boolean tuples, such 

that for each query q in Q, there exists a tuple t in T that is 

returned. 

The MTD problem has several potential applications. 

Consider a travel agency that wishes to design vacation 

packages, given the travel preferences of its clients. For 

example, a vacation package to Costa Rica can include some 

of the following attractions: beaches such as Puerto Vijeo, 

Jaco, Flamingo, etc.; mountains and national parks such as 

Arenal area, Monteverde, Tortuguero, etc. The clients of the 

agency provide their preferences by specifying “yes”, “no”, or 

“don’t care” for each attraction. The travel agency might want 

to create a minimum set of vacation packages to satisfy all its 

customers, because each package induces fixed overheads to 

the agency, e.g., requires a dedicated vacation guide, or a 

transportation vehicle, etc. Likewise, a product manufacturer 

may wish to design and manufacture a small range of products 

that will cover the preferences of all customers. 

One of the practical challenges is to ensure the availability of 

a large and rich query log to make the design of the new 

product/package truly effective for the customer base. While 

customer preferences can of course be explicitly collected 

through tools such as surveys and questionnaires, a very 

effective alternative is to implicitly collect such preferences 

by observing and recording user behavior on the internet – 

e.g., their browsing and navigation patterns on a product 

manufacturer or e-tailer’s website, such as the pages and 

http://www.ijsea.com/


International Journal of Science and Engineering Applications 

Volume 6 Issue 03, 2017, ISSN-2319-7560 (Online) 

www.ijsea.com  105 

products they click on. The vast use of the Internet nowadays 

allows enormous amounts of such preferences to be very 

easily collected. However, in this paper, we do not focus on 

how exactly such query logs can be collected. Rather we 

assume the presence of such logs, and focus more on the 

technical challenges, i.e., designing effective and scalable 

solutions of the maximal reverse selection query problems 

(Miah et al. 2016). 

The MTD problem is technically challenging because the 

problems turn out to be NP-complete (proof of NP-

completeness shown later in the paper). It is therefore 

necessary to design good approximation algorithm that has 

provable approximation bound or heuristics that work well in 

practice, or even exact algorithms that work well for moderate 

problem instances. However, it is not easy to simply reuse 

well-known approximation algorithms for related NP-

complete problems, as none of these algorithms are an exact 

fit for MTD. 

Major Contributions: 

 The paper considers the problem of Maximal Reverse 

Selection Queries for Boolean databases, and focus on 

specific problem, the Multiple Tuple Design (MTD) 

problem. The first result is to show that MTD is NP-

complete. The proof for MTD uses a reduction from 

Graph Coloring (GC). 

 Approximation algorithms for the MTD problem are 

developed. The first algorithm has a provable 

approximation bound, and is based on a combination of 

known approximation algorithms (and their 

approximation factors) of two separate NP-complete 

problems. However, this algorithm is mainly of 

theoretical interest as its approximation factor is quite 

large.  

 Two other more practical approximation algorithms are 

also developed. While these algorithms do not guarantee 

any approximation bounds, they are scalable and are 

shown to have small approximation factors in practice. 

 The extension of the problem to the Categorical and 

Numeric Databases also discussed. 

 Detailed performance evaluations are performed on real 

and synthetic data to demonstrate the effectiveness of the 

developed algorithms. 

The rest of the paper is organized as follows. Section 2 

provides formal problem definitions for MTD. Section 3 

analyzes the computational complexities for the problems. 

Section 4 presents approximation algorithms with provable 

bounds. Section 5 provides approximation heuristics that are 

scalable and have small approximation factors in practice. 

Section 6 presents the result of extensive experiments. Section 

7 provides the extension of the problems to other databases. 

Related work is discussed in Section 8, conclusions in Section 

9, and Section 10 provide references. 

2. PROBLEM FRAMEWORK 
To define the problem more formally, we need to develop a 

few abstractions. 

Attributes: Let A = {a1…aM} be a set of Boolean attributes (or 

elements, or features). 

Query (with negation): We view each user query as a subset 

of attributes and/or negation of attributes. The semantics is 

conjunctive, e.g., query {a1, a3} is equivalent to “a1 = 1 and a3 

= 1”. We also consider queries with negations, e.g., {a1, ~a2} 

is equivalent to “a1 = 1 and a2 = 0”. The remaining attributes 

for which values are not mentioned in the query are assumed 

to be “don’t care”, i.e., the value in the new designed tuple 

can be either 0 or 1. 

Query Log or Workload: Let Q = {q1…qS} be a collection of 

queries. 

For the MTD problem, we need to design a number of tuples. 

In fact, we need to design the minimum number of tuples such 

that together they satisfy all the queries in the query log. 

Below is more formal definitions of the problems introduced 

in Section 1: 

Multiple Tuple Design (MTD) Problem: Given a query log Q 

with conjunctive semantics where a query can have negations, 

design the minimum number of tuples (assign value [0, 1] for 

each attribute in each tuple) such that for each query of Q 

there exists a tuple that satisfies it. 

Example 1. Consider Table 1 which shows a query log for a 

vacation package application, containing S=6 queries and 

M=6 attributes where each tuple (query) represents the 

preferences of a user. A query has values 1, 0, or ?, where 1 

means the attribute must be present, 0 means the attribute 

must not be present, and “?” means “don’t care”. As we can 

see for this example that if we design three new packages as t1 

(with Beach = 1, Boating = 0, Casino = 0, Fishing = 1, 

Historical Site = 1, Museum = 0 which satisfies three queries 

q2, q4 and q6), t2 (with Beach = 0, Boating = 1, Casino = 1, 

Fishing = 0, Historical Site = 1, Museum = 1 which satisfies 

two queries q3  and q5), and t3 (with Beach = 1, Boating = 0, 

Casino = 1, Fishing = 1, Historical Site = 0, Museum = 0 

which satisfies one query q1), we can satisfy all 6 queries in 

Table 1. No other combination of three or less packages will 

satisfy all queries.   

Table 1. Query Log Q for Running Example 

Query 

ID 

Beach Boating Casino Fishing Historical 

Site 

Museum 

q1 1 0 1 ? ? ? 

q2 1 ? 0 ? 1 ? 

q3 0 ? 1 ? 1 ? 

q4 ? 0 0 1 1 ? 

q5 ? 1 ? 0 ? 1 

q6 1 0 0 ? ? 0 

 

 

3. COMPLEXITY RESULTS 
The MTD problem is NP-complete. 

Theorem 1: MTD is NP-complete. 

Proof: The problem is clearly in NP as a proposed solution 

can be easily verified in polynomial time by a single pass over 

the query log. To prove that it is NP-complete, we reduce the 

Graph Coloring (GC) problem to MTD. In the GC problem, 

we wish to assign colors to the vertices of a graph such that no 

two adjacent vertices share the same color, and are required to 
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find the minimum number of colors needed to color the graph 

(this number is known as the chromatic number of the graph). 

The reduction is as follows. Let G = (V, E) be the graph in the 

GC instance. Edges will correspond to Boolean attributes and 

vertices will correspond to queries. Each edge ei = (vj, vk)  E 

represents a Boolean attribute ai, with the condition ai = 1 a 

part of the query qj corresponding to vertex vj and the 

condition ai = 0 a part of the query qk corresponding to vertex 

vk. (i.e., with one end point representing the positive literal ai 

and the other end point representing the negative literal ~ai). 

To make it little more clear, when considering vertex vj (for 

query qj), then only considering the end point of edge ej 

connected to vj, not the end connected to vk; and similarly 

when considering vertex vk (for query qk), then the same edge 

ej is being represented as ek only considering the end point of 

edge ek connected to vk, not the end connected to vj. Thus, 

each vertex vj represents a query qj, where the query is 

represented as a conjunction of the literals corresponding to 

the end points of all edges that are incident to vj, and the 

remaining attributes are “don’t care”s. 

Thus, Figure 1(a) shows a 3-colorable graph G with a valid 

coloring and Figure 1(b) shows the corresponding query log 

for the MTD instance. It is easy to see that finding the 

chromatic number of G is equivalent to finding the smallest 

set of tuples (with an assignment of {0, 1} values to each 

Boolean attribute) in the MTD instance that satisfies all the 

queries.   

The GC problem is NP-hard only for graphs with chromatic 

number > 2 and hence the MTD problem is NP-hard only if 

we need to design more than 2 tuples to cover all queries. 

 

 

 

 

    

                                    (a)                                                                            

 

                              

       (b)                                                                            

Figure 1. An instance graph and corresponding query log. 

 

4. APPROXIMATION ALGORITHM 

WITH PROVABLE BOUND  
Although the Graph Coloring (GC) problem is used to prove 

NP-completeness of MTD, GC does not have a good bounded-

factor approximation algorithm. In fact, the best known 

approximation algorithm has an approximation factor that can 

be very close to the number of vertices in the graph. Hence 

such algorithms are not useful for developing bounded-factor 

approximation algorithms for MTD. Moreover, an 

approximation algorithm for GC is not directly applicable to 

MTD problem. 

Instead, proposed approach for developing an approximation 

algorithm for MTD is based on two steps. We first define a 

problem that is more convenient than MTD for developing 

approximation algorithms, called the Multiple Tuple Selection 

problem (MTS). We then consider an approximation algorithm 

for MTS, and make modifications so that it can eventually be 

used to solve MTD. The modifications entail making repeated 

invocations to the approximation algorithm for STD (Miah et 

al. 2016) for different instances of STD. The details are given 

below. 

The Multiple Tuple Selection (MTS) problem is almost the 

same as the MTD, except that in addition to the query log, a 

set of candidates tuples P is also given, and we are restricted 

to select the minimum subset of tuples T from this set P. 

Lemma 1: MTS is NP-Complete 

Proof: The problem is clearly in NP as a solution can be 

verified in polynomial time. To prove NP-completeness, we 

reduce from the Hitting Set (HS) problem (Garey and Johnson 

1979). Given a ground set Z of elements, and a collection Y of 

subsets of Z, the goal of the HS problem is to find the smallest 

subset H ⊆  Z of elements that hits every set of Y. 

The reduction of HS to MTS is as follows. Assume MTS has V 

candidate tuples, S queries, and M attributes; and HS has n 

sets and m elements. For each element ei in HS, create a query 

qi and an attribute ai in MTS. Set ai(qi) = 1 and the rest of the 

attributes of qi to “don’t care”.  For each set si in HS, create a 

tuple ti in MTS. For each element ej in si, set aj(ti) = 1. Set the 

rest of the attributes of ti to 0. Then, a solution to HS is a 

solution to MTS and vice-versa. 

Note that in the above reduction, we set S = M = m and V = n. 

That is, we use as many attributes as queries. If we would 

assume that M = log(S), then the above reduction is not valid 

and it is an open problem whether the problem is NP-

complete or not.   

Even though the MTS problem is NP-complete (as is MTD), 

MTS has an advantage over MTD - it can be solved using the 

well-known greedy approximation algorithm for the 

SETCOVER problem (Cormen et al. 2001), which we describe 

below. 

An instance (X, F) of the SETCOVER problem consists of a 

finite set X and a family F of subsets of X, such that every 

element of X belongs to at least one subset of F. The goal is to 

find a minimum subset EF whose members cover all of X. 

A greedy approximation algorithm (Cormen at al. 2001) 

provides an approximation bound of H(max {|B| : BF}) 

where H(d) represents the dth harmonic number which is equal 

to log(max {|B| : BF}) + O(1). The greedy algorithm works 

as follows: (i) at each iteration, the algorithm picks the set 

with highest number of elements from the sets not picked yet, 

and (ii) the process repeats until all elements are covered. 

We can directly relate MTS to the SETCOVER problem as 

follows: let us assume X is the query log (Q) and F is the set 

of given tuples (P), where each package represents the set of 

queries that are satisfied by it. Now the goal is to find the 

minimum set of tuples T from P such that they cover all the 

Query ID a1,2 (a2,1) a1,3 (a3,1) a1,4 (a4,1) a2,4 (a4,2) 

q1 1 1 1 0 

q2 1 0 0 1 

q3 0 1 0 0 

q4 0 0 1 1 

1 2 

4 3 
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queries in Q. Thus MTS also has the same approximation 

bound as the SETCOVER problem which would be log(max 

{|V| : VP}) + O(1), where V is a subset VP which covers 

all queries in Q. Thus, in the worst case the approximation 

factor for MTS is log(S) where S is the number of queries in 

the query log Q. 

Extending this approach to the MTD problem is challenging 

as we do not have a set of candidate packages. Moreover, it is 

not possible to simply first enumerate all possible packages, 

as this is exponential in the number of attributes! However, 

one of the interesting contributions of this paper is the 

observation that we can avoid this enumeration by combining 

the approximation algorithm for STD (discussed earlier) with 

the greedy approximation algorithm for SETCOVER to 

eventually design an approximation algorithm for MTD. 

Essentially, we take the greedy algorithm for SETCOVER, and 

make modifications that entail making repeated invocations to 

the approximation algorithm for STD for different STD 

instances. 

This combined algorithm proceeds as follows: (i) at each 

iteration the algorithm makes a call to the approximation 

algorithm for STD (Miah et al. 2016) over the not-yet-satisfied 

queries, which returns a tuple such that the number of new 

queries that are satisfied is at least ck/2k times the number of 

new queries that would have been satisfied by an optimal 

tuple, and (ii) the process repeats until all queries are satisfied. 

The following theorem shows that the above algorithm has a 

provable approximation bound. 

Theorem 2: The number of tuples returned by the 

approximation algorithm described above is at most 

(2k/ck)log(S) times the number of tuples returned by an exact 

algorithm for MTD. 

Proof: Let Tmin be the optimal (minimum) set of tuples that 

together satisfy all queries in the query log Q. Let T′ = t′1, t′2, 

…, t′x be the sequence of tuples returned by the above 

approximation algorithm. We shall show that x=|T’| ≤ 

|Tmin|(2k/ck)log(S). 

Let us imagine that each tuples is allotted a weight of 1, and 

the weight is evenly distributed to all queries that are satisfied 

for the first time by that package. For example, if t′1 satisfies 

queries q1 and q2, then wt(q1) = wt(q2) = 1/2; if tuple t′2 

satisfies query q3, q4, and q5, then wt(q3) = wt(q4) =  wt(q5) = 

1/3. It is easy to see that the accumulated weight of all the 

queries aggregate to x. 

Consider any tuple ti of Tmin. Let t′i,1, t′i,2, …t′i,r be the order in 

which the approximation algorithm returns tuples that have 

non-empty intersection with ti, i.e., that there exists at least 

one query in the query log that is satisfied by both t′i,j and ti. 

To make notation convenient, we will refer to any tuple t as 

the set of queries that it satisfies, and |t| as size of this set. 

Let ui,j = |t′ – (t′i,1 U t′i,2, …U t′i,j)|. Thus, of all the queries that 

are satisfied by t′, ui,j refers to the number of queries that are 

still not satisfied by the approximation algorithm at the time 

the last generated tuple is t′i,j. 

Consider t′i,j+1. We argue that |t′i,j+1| ≥ (ck/2k) ui,j. Because if 

this were not so, then the greedy approximation algorithm for 

STD would not have returned t′i,j+1, since the number of 

remaining queries it would have satisfied would have been too 

small and its known approximation bound would have been 

violated – in fact,  ti itself would have been a better package to 

return next instead of t′i,j+1. 

Thus, the aggregate weight of all queries satisfied by ti is 
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 

In summary, the above discussions demonstrate the existence 

of bounded approximation factor algorithms for the MTD 

problem. However, while interesting from a conceptual point 

of view, in practice these approximation factors are too 

suboptimal to be useful, and the algorithms themselves 

require complex in-memory implementations based on semi-

definite programming (SDP) relaxation methods. More 

practical approximation algorithms are needed that work well 

for moderate as well as large problem instances. Such 

algorithms are discussed in the next section. 

5. SCALABLE APPROXIMATE 

ALGORITHMS 
The approximation algorithm of Section 4 is useful for 

theoretical purposes, but it is not very feasible in practice. 

This is because that is main memory algorithms based on 

semi-definite programming (SDP) relaxation, which do not 

scale for large instances. Moreover, the bounded 

approximation factors are too suboptimal to be useful in 

practice. This section proposes scalable approximation 

algorithm MTD, which are shown to perform well in terms of 

scalability and approximation error in Section 6. 

The solution for MTD involves a combination of the solution 

of multiple instances of STD. Miah et al. (2016) proposed an 

exact algorithm for STD based on Signature Tree data 

structures. A depth first creation of the signature tree is 

adapted, where at each downward step it picks an attribute 

that will be used as the splitting node. Further, for every 

traversed node v, it checks if this node has a chance to be the 

best package. That is, it compares the number of satisfied 

queries in v to the current maximum number C of satisfied 

queries. If v fails this test, it prunes the whole subtree rooted 

at v, since the children of v satisfy at most as many queries as 

v. During the depth-first traversal, it first traverses the child 

that contains the maximum number of queries, since the 

objective is to create an assignment of values to all attributes 

that maximizes the number of satisfied queries. When it finds 

the node v with the maximum C, it creates the corresponding 

“best” tuple by traversing the path from v to the root and 

assigning attribute values accordingly. 

Figure 2 shows the pseudocode of SigTreeSTD exact 

algorithm for STD (Miah et al. 2016) 
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Fig 2. Pseudocode of SigTreeSTD exact algorithm for STD 

(Miah et al. 2016) 

 

Miah et al. (2016) also proposed an approximation algorithm 

HeuristicSTD for STD, the pseudocode is shown in Figure 3. 

 

 

 

 

 

 

 

 

 

 

Fig 3. Pseudocode of HeuristcSTD: approximation algorithm 

for STD (Miah et al. 2016) 

 

We consider two variants for STD: one using the exact or 

optimal STD algorithm, and the other using the heuristic of 

STD (Miah et al. 2016). In particular, the algorithms are as 

follows: 

a) Apply algorithm for STD and add solution assignment 

(tuple) to result. 

b) Remove the queries from the query log that are satisfied 

by assignment in step (a). 

c) Repeat steps (a) and (b) until no further queries or 

attributes are left. 

Figure 4 displays the pseudo-code of two approximation 

algorithms for MTD. Note that the way that the idea of 

greedily removing satisfied queries is inspired by a 

SETCOVER heuristic (Cormen et al. 2001). 

The SigTreeMTD algorithm has approximation bound log(S), 

where S is the number of queries in Q, since the STD 

component of the algorithm is exact. There is no 

approximation bound for HeuristicMTD, but it is shown to 

perform well in Section 6. 

 

 
Fig 24. Pseudocode of SigTreeMTD and HeuristicMTD 

approximation algorithms for MTD 

 

6. EXPERIMENTS 
The main performance indicators are (a) the time cost of exact 

and approximation algorithms, and (b) the approximation 

quality of approximation algorithms. 

6.1 System Configuration and Datasets 
System Configuration: We used Microsoft SQL Server 2000 

RDBMS on a P4 3.2-GHZ PC with 1 GB of RAM and 100 

GB HDD for our experiments. Algorithms are implemented in 

C#. 

Datasets: Datasets of products and product queries are used. 

Note that products are just one of the possible instantiations of 

the more general packages of this paper. We used real and 

synthetic datasets (query logs). In specific, we use two 

datasets: (i) REAL: real query log, and (ii) REAL+: synthetic 

query log generated from the real query log. 

Real query log (REAL): 237 queries collected for cell phones 

from university users and friends through an online survey. 

The survey was designed with 30 Boolean features such as 

Bluetooth, Wi-Fi, Camera, Speakerphone and so on. Users 

were asked to select the features they prefer to have (positive) 

and most likely not to have (negative) in their cell phones. 

Users selected 3-6 positive and 1-2 negative features on 

average. Hard disk was a popular negative feature. 

Synthetic query log generated from real query log (REAL+): 
As the real query log is very small, it is inappropriate for 

scalability experiments. So larger datasets were generated 

from the real query log. A total of 251,575 queries were 

generated as follows: at each step we randomly select a query 

from the REAL query log, randomly select two of its 

attributes and swap their values. We also generate datasets for 

a fixed size of query log for varying number of attributes (10, 

15, 20, 25, 30). 

Algorithm: SigTreeSTD 

Signature Tree T //initially single node u that contains all 

   queries in Q, that is u=Q. 

Let C be the current max # queries in a leaf node of the 

signature tree. Initially C  0 

Stack V 

V.push(T) //T is root node of T 

While V not empty do 

uV.top() 

If both children of u have been processed before or there 

is no splitting attribute then 

update C //if |u|>C then C=|u| 

V.pop(); 

Continue; 

Find next splitting attribute A for u 

If |uA=0| > |uA=1| and uA=0 not processed before // uA=1 is 

the 

   set of queries from u that satisfy A=1 (similar for uA=0) 

V.push (uA=0) //dfs to create tree for left child.  

Else if uA=1 not processed before 

V.push (uA=1) //dfs to create tree for right child 

Return assignment for C 

 

 

 

 

 

 

 

Algorithm: SigTreeMTD 

While Q not empty do   // Q is the query log 

    Apply algorithm SigtreeSTD on Q 

    Remove queries from Q those satisfy the assignment  

 

Algorithm: HeuristicMTD 

While Q not empty do 

    Apply algorithm HeuristicSTD on Q 

    Remove queries from Q those satisfy the assignment 

Approx Algorithm: HeuristicSTD 

Let Q be the query log, A (a1…aM) be the attributes in Q 

Complement the query log (~Q)   // convert 1 to 0 and 0 to 

1, also convert conjunctive form to disjunctive form 

For (int i = 1 to M) 

If ~Q not empty 

   Count # of queries satisfied both for ai = 1 and ai = 

0. 

   Assign the value of ai that gives the minimum count 

           Remove queries from ~Q satisfied by the value of ai 

Return the attributes assignment 

 

 

 

 

 

http://www.ijsea.com/


International Journal of Science and Engineering Applications 

Volume 6 Issue 03, 2017, ISSN-2319-7560 (Online) 

www.ijsea.com  109 

Table 2 summarizes the query logs or datasets. 

 

Table 2. Summary of Query Logs (Datasets) 

Query log  # of attributes Query log size 

REAL 30 237 

REAL+_30 30 25K, 50K, …, 200K 

REAL+_1000 10, 15, …, 30 1000 

 

6.2 Experimental Results 
Figure 5 shows the performance and quality of the algorithms 

for the REAL dataset. Figures 6 and 7 show the performance 

of the algorithms for varying query log size and number of 

attributes respectively, for REAL+ dataset. As we can see 

from the graphs, the HeuristicMTD algorithm is much more 

efficient than the SigTreeMTD which is developed based on 

exact algorithm of STD. The missing data in Figure 6 is due to 

the very slow speed of this algorithm for large datasets. The 

running time of SigTreeMTD algorithm increases 

exponentially as the number of total attributes increases. 

 

 

(a) Time cost                                         (b) Quality 

Fig 5. Time cost and Quality for REAL dataset 

 

 

Fig 6. Time cost for varying query log size for REAL+_30 

 

Fig 7. Time cost for varying # of attributes for REAL+_1000 

 

 

Fig 8. Quality for varying query log size for REAL+_30 

 

 

Fig 9. Quality for varying # of attributes for REAL+_1000 

Figures 8 and 9 show the quality (number of products need to 

design to satisfy all queries in the query log) of the 

approximation algorithm for varying query log size and 

number of attributes respectively for REAL+. For the same 

reason as in Figure 6, Figure 9 also has missing data for 

SigTreeMTD algorithm. 
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7. EXTENSION TO OTHER TYPES OF 

DATABASES 
The Boolean problems discussed above can be extended to 

categorical and numerical databases as well. 

7.1 Problem Framework 
Categorical: Can be converted into a set of Boolean attributes 

according to its distinct categorical values. 

Numeric: Comprises of a subset of attributes taking numeric 

values, while the remaining attributes for which values are not 

specified are assumed to be “don’t care” (represented as “?”), 

i.e., in the newly designed tuple the numeric attribute can 

have any value between the range of values it can take. For 

e.g, query {a1=10, a3=5.2} is equivalent to “a1=10 and 

a3=5.2”, while the remaining attributes are ?. 

7.2 Complexity Results 
Corollary 1: MTD is NP-complete for categorical databases. 

It is easy to see that the reduction from GC to the Boolean 

MTD instance can be readily extended to reduce GC to the 

categorical MTD instance by having as many edges as the 

number of distinct categorical values an attribute can take. 

Corollary 2: MTD is NP-complete for numeric databases. 

The proof of NP-completeness for numeric databases follows 

from Corollary 1 where the distinct categorical attribute 

values in the graph edges are replaced by numeric values from 

the range of values that numeric attribute can have. 

7.3 Numeric SigTreeMTD Algorithm  
The Boolean version of the algorithm ai extended as follows. 

For each attribute, let R(ai)=r1,..,rs be the set of range 

conditions specified for ai in the query log Q. Let E(ai) be the 

list of endpoints of the ranges in R(ai), in ascending order. 

Then, we define I(ai) as the list of intervals created from E(ai), 

one interval for each two consecutive endpoints. E.g. if 

r1=(2,3), r2=(3,5), r3=(4,7), then E(ai)={2,3,4,5,7} and 

I(ai)={[2,3], [3,4], [4,5], [5,7]}. Note that |E(ai)| ≤ 2×|Q| and 

|I(ai)| ≤ 2×|Q|-1, where |Q| is the number of queries in Q. 

Then, each attribute has |I(ai)| children, denoting all possible 

intervals for ai. Each path from root to a node u can be viewed 

as a list of intervals, one for each attribute along the path. To 

compute the number of queries for u, we make a pass on Q 

and count the number of queries that satisfy all the conditions 

along the path from root to u. The rest of the algorithm and 

pruning conditions are the same as the Boolean version, where 

instead of having only two values 0,1 to choose from at each 

step, we choose among the intervals in |I(ai)|. 

8. RELATED WORK 
The most related work to work of this paper is the the 

maximal reverse problem or Single Tuple Design (STD) 

Problem: Given a database (set of tuples) and a query log, the 

task is to construct a new tuple such that the set of queries in 

the query log that return the new tuple is larger than for any 

other tuple in the database (Miah et al. 2016). However, this 

paper focus on an interesting variant of the Single Tuple 

Design problem. Instead of just designing a single tuple, we 

are interested in creating a minimum number of tuples that 

collectively satisfy all queries in the query log. This is 

referred to as the Multiple Tuple Design (MTD) problem. 

There is been recent interest in the area of Reverse Query 

Processing for various query models such as kNN, Top-k, 

skyline, and so on (Binning et al. 1994, 2007; Dellis and 

Seeger 2007; Korn and Muthukrishnan 2000; Vlachou et al. 

2010). Unlike traditional query processing, the applications 

are not from a customer’s point of view, but rather are from 

the manufacturer’s point of view, i.e., of how to determine the 

set of customers that find a particular product appealing. 

Reverse Nearest Neighbor (RNN) queries were first 

investigated by Korn and Muthukrishnan (2000). Given any 

query point q, Reverse NN is to determine the set RNN(q) of 

reverse nearest neighbors. Reverse Skyline Queries (Dellis 

and Seeger 2007) considers for a multidimensional data set D 

the problem of dynamic skyline queries according to a query 

point q. This kind of dynamic skyline corresponds to the 

skyline of a transformed data space where point q becomes 

the origin and all points of D are represented by their distance 

vector to q. The reverse skyline query returns the objects 

whose dynamic skyline contains the query object q.  Recent 

work on Reverse top-k queries (Vlachou et al. 2010) is from 

the perspective of the product manufacturer. The problem is, 

given a potential product, which are the user preferences for 

which this product is in the top-k query result? 

The work in this paper is different than all the works on 

reverse query processing discussed above. We are not given 

the set of data tuples to pick from, instead we have to design a 

set of new tuples (MTD) that satisfy maximum number of 

queries in the given query log. In this regard, our STD 

problem is somewhat similar to maximal reverse query 

processing problems that has recently received some attention 

for skyline (Li et al. 2007; Li et al. 2006) and kNN (Cabello et 

al. 2005; Wong et al. 2009) queries with numeric attributes. 

Our work is different from these because we consider 

selection queries over Boolean attributes. 

Works on dominant relationship (Li et al. 2006) and 

dominating neighborhood (Li et al. 2007) uses skyline query 

semantics assuming that attributes are min/max, that is, all 

users have the same preference for an attribute (e.g., 2 doors is 

always better than 4 doors). Further, they assume there is a 

profitability plane which simplifies the algorithm given that 

the optimal solution is a point on the profitability plane. In 

contrast, in work of this paper along with the work of Miah et 

al. (2016) users may have opposite preferences for the same 

attribute, and the algorithms can be used with or without a 

profitability plane.  

Miah et al. (2009) tackled another related problem of 

maximizing the visibility of an existing object by selecting a 

subset of its attributes to be advertised. The main problem 

was: given a query log with conjunctive query semantics and 

a new tuple, select a subset of attributes to retain for the new 

tuple so that it will be retrieved by the maximum number of 

queries. The work did not consider negated conditions as in 

the work of this paper.  

Optimal product design or positioning is a well-studied 

problem in Operations Research and Marketing. Shocker and 

Srinivasan (1974) first represented products and consumer 

preferences as points in a joint attribute space. After that, 

several approaches and algorithms (Albers and Brockhoff 

1977; Albers and Brockhoff 1980; Albritton and McMullen 

2007; Gavish et al. 1983; Gruca and Klemz 2003; Kohli and 

Krishnamurti 1989) have been developed to design/position a 

new product. Works in this domain require direct involvement 

(one or two step) of consumers and users are usually shown a 

set of existing alternative products (predesigned) to choose or 

set preferences. Users in this domain in fact do not get to 

select the attributes or features they like and do not like.  

Instead of involving users directly in the process of designing 

new products, this paper uses previous user search queries to 

model user preferences, since it is easy to collect the 

preferences (search queries) for large number of Internet users 
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nowadays. This paper also consider large query logs to design 

the new set of products and allow users to express their 

interests in attribute or feature level in terms of positive, 

negative and “don’t care”. 

The MTD problem can be viewed as the segmentation 

problem (Kleinberg et al. 1998) for the STD problem (Miah et 

al. 2016). However, in MTD the size of each segment is not 

given. 

9. CONCLUSIONS 
This paper investigated the problem of designing smallest set 

of tuples for maximal reverse selection queries - given a set of 

selection queries with conjunctive conditions (where a query 

can have negations), create the smallest set of tuples that that 

collectively satisfy all queries in the query log.   The problem 

has several natural applications, such as designing best 

vacation packages, designing new products, and so on. The 

paper shows the difference of the proposed problem from the 

existing techniques in various fields such as marketing, 

product design, operation research, query processing, etc. The 

paper considers several interesting variants of the problem as 

well as various types of databases such as Boolean, 

categorical, and numerical. It proves intractability results, and 

provide approximation algorithms, some of which are shown 

to work well in practice. A future direction is to extend the 

problem to develop more scalable algorithms for categorical, 

numeric, and possibly text data and different query semantics 

such as top-k and skyline queries. 
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