
International Journal of Science and Engineering Applications

Volume 6 Issue 03, 2017, ISSN-2319-7560 (Online)

www.ijsea.com 104

Smallest Set for Reverse Selection Queries to Satisfy All

Muhammed Miah

Department of Computer Information Systems

Southern University at New Orleans

New Orleans, LA 70126, USA

Abstract: In recent years, research has moved from traditional query processing (e.g., Selection, Nearest Neighbor (NN), Top-k,

Skyline), to reverse query processing (e.g., Reverse NN, Reverse Top-k, Reverse Skyline), to maximal reverse query processing (e.g.,

find spatial points that maximize the number of Reverse NNs), and so on. This paper considers the Smallest Set Reverse Selection

Queries Problem also known as the Multiple Tuple Design Problem: Given a set of selection queries with conjunctive conditions,

where the task is to create the smallest set of tuples such that each query returns at least one of these tuples. The problem is an

interesting variant of the Maximal Reverse Selection Queries Problem (also referred to as the Tuple Design Problem) introduced by

Miah et al. (2016). The paper shows that the problem is NP-Complete and develops approximation algorithms with provable

approximation guarantees, as well as carefully designed heuristics that work well in practice. The paper also designs efficient exact

algorithm that are feasible for moderate instances. It provides extensive experiments that demonstrate the effectiveness of the proposed

algorithms.

Keywords: smallest set; reverse selection queries; multiple tuple/product design; maximize visibility, satisfy all.

1. INTRODUCTION
Significant research has been done in the area of traditional

query processing, where a query and a database (set of tuples)

are given, and the task is to return all tuples in the database

that satisfy the query. Different query models have been

developed for query processing including “selection queries”

to find the set of tuples that satisfy a selection condition,

“kNN queries” to find the set of k tuples that are closes to a

query tuple, “skyline queries” to find all tuples that are not

dominated by any other tuple), “top-k queries” to find the top-

k tuples , and so on.

Research has moved in recent years to the complementary

area of reverse query processing, where in the database (set of

tuples), a query log, and a potential tuple are given, and the

task is to find all queries in the query log that return the given

tuple. The reverse query processing also has been studied for

a variety of query models, such as “reverse kNN”, “reverse

top-k”, “reverse skyline”, and so on. While traditional query

processing applications focus on the customers or end users,

reverse query processing applications focus on the

manufacturers or sellers, e.g., helping manufacturer identify

products that are most preferred by customers.

Maximal reverse query processing has been studied as well

for skyline (Li et al. 2007; Li et al. 2006) and kNN (Cabello et

al. 2005; Wong et al. 2009) queries with numeric attributes.

Most recently, an interesting related area of maximal reverse

selection queries problem has been introduced. Given a

database (set of tuples) and a query log, the task is to

construct a new tuple such that the set of queries in the query

log that return the new tuple is larger than for any other tuple

in the database. This focused on the maximal reverse queries

problem on the important class of “selection queries” over

Boolean databases. Assume that a Boolean tuple (e.g., a new

product) needs to be designed by selecting a subset of

Boolean features (or attributes) from a large set of possible

features. Assume that we are given a set of user preferences in

the form of a query log (or workload) of user queries, where

each query is a conjunction of positive or negative preferences

for some of the features (e.g., “Select * from Database where

a1=0 and a4=1 and a6=1”). The problem also known as Tuple

Design (TD) or Single Tuple Design (STD) Problem (Miah et

al. 2016).

This paper focus on an interesting variant of the Single Tuple

Design problem. Instead of just designing a single tuple, we

may be interested in creating a minimum number of tuples

that collectively satisfy all queries in the query log. This is

referred to as the Multiple Tuple Design (MTD) problem.

MTD (Multiple Tuple Design) Problem: Given a query log Q

consisting of conjunctive selection queries over Boolean

attributes, construct the smallest set T of Boolean tuples, such

that for each query q in Q, there exists a tuple t in T that is

returned.

The MTD problem has several potential applications.

Consider a travel agency that wishes to design vacation

packages, given the travel preferences of its clients. For

example, a vacation package to Costa Rica can include some

of the following attractions: beaches such as Puerto Vijeo,

Jaco, Flamingo, etc.; mountains and national parks such as

Arenal area, Monteverde, Tortuguero, etc. The clients of the

agency provide their preferences by specifying “yes”, “no”, or

“don’t care” for each attraction. The travel agency might want

to create a minimum set of vacation packages to satisfy all its

customers, because each package induces fixed overheads to

the agency, e.g., requires a dedicated vacation guide, or a

transportation vehicle, etc. Likewise, a product manufacturer

may wish to design and manufacture a small range of products

that will cover the preferences of all customers.

One of the practical challenges is to ensure the availability of

a large and rich query log to make the design of the new

product/package truly effective for the customer base. While

customer preferences can of course be explicitly collected

through tools such as surveys and questionnaires, a very

effective alternative is to implicitly collect such preferences

by observing and recording user behavior on the internet –

e.g., their browsing and navigation patterns on a product

manufacturer or e-tailer’s website, such as the pages and

http://www.ijsea.com/

International Journal of Science and Engineering Applications

Volume 6 Issue 03, 2017, ISSN-2319-7560 (Online)

www.ijsea.com 105

products they click on. The vast use of the Internet nowadays

allows enormous amounts of such preferences to be very

easily collected. However, in this paper, we do not focus on

how exactly such query logs can be collected. Rather we

assume the presence of such logs, and focus more on the

technical challenges, i.e., designing effective and scalable

solutions of the maximal reverse selection query problems

(Miah et al. 2016).

The MTD problem is technically challenging because the

problems turn out to be NP-complete (proof of NP-

completeness shown later in the paper). It is therefore

necessary to design good approximation algorithm that has

provable approximation bound or heuristics that work well in

practice, or even exact algorithms that work well for moderate

problem instances. However, it is not easy to simply reuse

well-known approximation algorithms for related NP-

complete problems, as none of these algorithms are an exact

fit for MTD.

Major Contributions:

 The paper considers the problem of Maximal Reverse

Selection Queries for Boolean databases, and focus on

specific problem, the Multiple Tuple Design (MTD)

problem. The first result is to show that MTD is NP-

complete. The proof for MTD uses a reduction from

Graph Coloring (GC).

 Approximation algorithms for the MTD problem are

developed. The first algorithm has a provable

approximation bound, and is based on a combination of

known approximation algorithms (and their

approximation factors) of two separate NP-complete

problems. However, this algorithm is mainly of

theoretical interest as its approximation factor is quite

large.

 Two other more practical approximation algorithms are

also developed. While these algorithms do not guarantee

any approximation bounds, they are scalable and are

shown to have small approximation factors in practice.

 The extension of the problem to the Categorical and

Numeric Databases also discussed.

 Detailed performance evaluations are performed on real

and synthetic data to demonstrate the effectiveness of the

developed algorithms.

The rest of the paper is organized as follows. Section 2

provides formal problem definitions for MTD. Section 3

analyzes the computational complexities for the problems.

Section 4 presents approximation algorithms with provable

bounds. Section 5 provides approximation heuristics that are

scalable and have small approximation factors in practice.

Section 6 presents the result of extensive experiments. Section

7 provides the extension of the problems to other databases.

Related work is discussed in Section 8, conclusions in Section

9, and Section 10 provide references.

2. PROBLEM FRAMEWORK
To define the problem more formally, we need to develop a

few abstractions.

Attributes: Let A = {a1…aM} be a set of Boolean attributes (or

elements, or features).

Query (with negation): We view each user query as a subset

of attributes and/or negation of attributes. The semantics is

conjunctive, e.g., query {a1, a3} is equivalent to “a1 = 1 and a3

= 1”. We also consider queries with negations, e.g., {a1, ~a2}

is equivalent to “a1 = 1 and a2 = 0”. The remaining attributes

for which values are not mentioned in the query are assumed

to be “don’t care”, i.e., the value in the new designed tuple

can be either 0 or 1.

Query Log or Workload: Let Q = {q1…qS} be a collection of

queries.

For the MTD problem, we need to design a number of tuples.

In fact, we need to design the minimum number of tuples such

that together they satisfy all the queries in the query log.

Below is more formal definitions of the problems introduced

in Section 1:

Multiple Tuple Design (MTD) Problem: Given a query log Q

with conjunctive semantics where a query can have negations,

design the minimum number of tuples (assign value [0, 1] for

each attribute in each tuple) such that for each query of Q

there exists a tuple that satisfies it.

Example 1. Consider Table 1 which shows a query log for a

vacation package application, containing S=6 queries and

M=6 attributes where each tuple (query) represents the

preferences of a user. A query has values 1, 0, or ?, where 1

means the attribute must be present, 0 means the attribute

must not be present, and “?” means “don’t care”. As we can

see for this example that if we design three new packages as t1

(with Beach = 1, Boating = 0, Casino = 0, Fishing = 1,

Historical Site = 1, Museum = 0 which satisfies three queries

q2, q4 and q6), t2 (with Beach = 0, Boating = 1, Casino = 1,

Fishing = 0, Historical Site = 1, Museum = 1 which satisfies

two queries q3 and q5), and t3 (with Beach = 1, Boating = 0,

Casino = 1, Fishing = 1, Historical Site = 0, Museum = 0

which satisfies one query q1), we can satisfy all 6 queries in

Table 1. No other combination of three or less packages will

satisfy all queries. 

Table 1. Query Log Q for Running Example

Query

ID

Beach Boating Casino Fishing Historical

Site

Museum

q1 1 0 1 ? ? ?

q2 1 ? 0 ? 1 ?

q3 0 ? 1 ? 1 ?

q4 ? 0 0 1 1 ?

q5 ? 1 ? 0 ? 1

q6 1 0 0 ? ? 0

3. COMPLEXITY RESULTS
The MTD problem is NP-complete.

Theorem 1: MTD is NP-complete.

Proof: The problem is clearly in NP as a proposed solution

can be easily verified in polynomial time by a single pass over

the query log. To prove that it is NP-complete, we reduce the

Graph Coloring (GC) problem to MTD. In the GC problem,

we wish to assign colors to the vertices of a graph such that no

two adjacent vertices share the same color, and are required to

http://www.ijsea.com/

International Journal of Science and Engineering Applications

Volume 6 Issue 03, 2017, ISSN-2319-7560 (Online)

www.ijsea.com 106

find the minimum number of colors needed to color the graph

(this number is known as the chromatic number of the graph).

The reduction is as follows. Let G = (V, E) be the graph in the

GC instance. Edges will correspond to Boolean attributes and

vertices will correspond to queries. Each edge ei = (vj, vk)  E

represents a Boolean attribute ai, with the condition ai = 1 a

part of the query qj corresponding to vertex vj and the

condition ai = 0 a part of the query qk corresponding to vertex

vk. (i.e., with one end point representing the positive literal ai

and the other end point representing the negative literal ~ai).

To make it little more clear, when considering vertex vj (for

query qj), then only considering the end point of edge ej

connected to vj, not the end connected to vk; and similarly

when considering vertex vk (for query qk), then the same edge

ej is being represented as ek only considering the end point of

edge ek connected to vk, not the end connected to vj. Thus,

each vertex vj represents a query qj, where the query is

represented as a conjunction of the literals corresponding to

the end points of all edges that are incident to vj, and the

remaining attributes are “don’t care”s.

Thus, Figure 1(a) shows a 3-colorable graph G with a valid

coloring and Figure 1(b) shows the corresponding query log

for the MTD instance. It is easy to see that finding the

chromatic number of G is equivalent to finding the smallest

set of tuples (with an assignment of {0, 1} values to each

Boolean attribute) in the MTD instance that satisfies all the

queries. 

The GC problem is NP-hard only for graphs with chromatic

number > 2 and hence the MTD problem is NP-hard only if

we need to design more than 2 tuples to cover all queries.

 (a)

 (b)

Figure 1. An instance graph and corresponding query log.

4. APPROXIMATION ALGORITHM

WITH PROVABLE BOUND
Although the Graph Coloring (GC) problem is used to prove

NP-completeness of MTD, GC does not have a good bounded-

factor approximation algorithm. In fact, the best known

approximation algorithm has an approximation factor that can

be very close to the number of vertices in the graph. Hence

such algorithms are not useful for developing bounded-factor

approximation algorithms for MTD. Moreover, an

approximation algorithm for GC is not directly applicable to

MTD problem.

Instead, proposed approach for developing an approximation

algorithm for MTD is based on two steps. We first define a

problem that is more convenient than MTD for developing

approximation algorithms, called the Multiple Tuple Selection

problem (MTS). We then consider an approximation algorithm

for MTS, and make modifications so that it can eventually be

used to solve MTD. The modifications entail making repeated

invocations to the approximation algorithm for STD (Miah et

al. 2016) for different instances of STD. The details are given

below.

The Multiple Tuple Selection (MTS) problem is almost the

same as the MTD, except that in addition to the query log, a

set of candidates tuples P is also given, and we are restricted

to select the minimum subset of tuples T from this set P.

Lemma 1: MTS is NP-Complete

Proof: The problem is clearly in NP as a solution can be

verified in polynomial time. To prove NP-completeness, we

reduce from the Hitting Set (HS) problem (Garey and Johnson

1979). Given a ground set Z of elements, and a collection Y of

subsets of Z, the goal of the HS problem is to find the smallest

subset H ⊆ Z of elements that hits every set of Y.

The reduction of HS to MTS is as follows. Assume MTS has V

candidate tuples, S queries, and M attributes; and HS has n

sets and m elements. For each element ei in HS, create a query

qi and an attribute ai in MTS. Set ai(qi) = 1 and the rest of the

attributes of qi to “don’t care”. For each set si in HS, create a

tuple ti in MTS. For each element ej in si, set aj(ti) = 1. Set the

rest of the attributes of ti to 0. Then, a solution to HS is a

solution to MTS and vice-versa.

Note that in the above reduction, we set S = M = m and V = n.

That is, we use as many attributes as queries. If we would

assume that M = log(S), then the above reduction is not valid

and it is an open problem whether the problem is NP-

complete or not. 

Even though the MTS problem is NP-complete (as is MTD),

MTS has an advantage over MTD - it can be solved using the

well-known greedy approximation algorithm for the

SETCOVER problem (Cormen et al. 2001), which we describe

below.

An instance (X, F) of the SETCOVER problem consists of a

finite set X and a family F of subsets of X, such that every

element of X belongs to at least one subset of F. The goal is to

find a minimum subset EF whose members cover all of X.

A greedy approximation algorithm (Cormen at al. 2001)

provides an approximation bound of H(max {|B| : BF})

where H(d) represents the dth harmonic number which is equal

to log(max {|B| : BF}) + O(1). The greedy algorithm works

as follows: (i) at each iteration, the algorithm picks the set

with highest number of elements from the sets not picked yet,

and (ii) the process repeats until all elements are covered.

We can directly relate MTS to the SETCOVER problem as

follows: let us assume X is the query log (Q) and F is the set

of given tuples (P), where each package represents the set of

queries that are satisfied by it. Now the goal is to find the

minimum set of tuples T from P such that they cover all the

Query ID a1,2 (a2,1) a1,3 (a3,1) a1,4 (a4,1) a2,4 (a4,2)

q1 1 1 1 0

q2 1 0 0 1

q3 0 1 0 0

q4 0 0 1 1

1 2

4 3

http://www.ijsea.com/

International Journal of Science and Engineering Applications

Volume 6 Issue 03, 2017, ISSN-2319-7560 (Online)

www.ijsea.com 107

queries in Q. Thus MTS also has the same approximation

bound as the SETCOVER problem which would be log(max

{|V| : VP}) + O(1), where V is a subset VP which covers

all queries in Q. Thus, in the worst case the approximation

factor for MTS is log(S) where S is the number of queries in

the query log Q.

Extending this approach to the MTD problem is challenging

as we do not have a set of candidate packages. Moreover, it is

not possible to simply first enumerate all possible packages,

as this is exponential in the number of attributes! However,

one of the interesting contributions of this paper is the

observation that we can avoid this enumeration by combining

the approximation algorithm for STD (discussed earlier) with

the greedy approximation algorithm for SETCOVER to

eventually design an approximation algorithm for MTD.

Essentially, we take the greedy algorithm for SETCOVER, and

make modifications that entail making repeated invocations to

the approximation algorithm for STD for different STD

instances.

This combined algorithm proceeds as follows: (i) at each

iteration the algorithm makes a call to the approximation

algorithm for STD (Miah et al. 2016) over the not-yet-satisfied

queries, which returns a tuple such that the number of new

queries that are satisfied is at least ck/2k times the number of

new queries that would have been satisfied by an optimal

tuple, and (ii) the process repeats until all queries are satisfied.

The following theorem shows that the above algorithm has a

provable approximation bound.

Theorem 2: The number of tuples returned by the

approximation algorithm described above is at most

(2k/ck)log(S) times the number of tuples returned by an exact

algorithm for MTD.

Proof: Let Tmin be the optimal (minimum) set of tuples that

together satisfy all queries in the query log Q. Let T′ = t′1, t′2,

…, t′x be the sequence of tuples returned by the above

approximation algorithm. We shall show that x=|T’| ≤

|Tmin|(2k/ck)log(S).

Let us imagine that each tuples is allotted a weight of 1, and

the weight is evenly distributed to all queries that are satisfied

for the first time by that package. For example, if t′1 satisfies

queries q1 and q2, then wt(q1) = wt(q2) = 1/2; if tuple t′2

satisfies query q3, q4, and q5, then wt(q3) = wt(q4) = wt(q5) =

1/3. It is easy to see that the accumulated weight of all the

queries aggregate to x.

Consider any tuple ti of Tmin. Let t′i,1, t′i,2, …t′i,r be the order in

which the approximation algorithm returns tuples that have

non-empty intersection with ti, i.e., that there exists at least

one query in the query log that is satisfied by both t′i,j and ti.

To make notation convenient, we will refer to any tuple t as

the set of queries that it satisfies, and |t| as size of this set.

Let ui,j = |t′ – (t′i,1 U t′i,2, …U t′i,j)|. Thus, of all the queries that

are satisfied by t′, ui,j refers to the number of queries that are

still not satisfied by the approximation algorithm at the time

the last generated tuple is t′i,j.

Consider t′i,j+1. We argue that |t′i,j+1| ≥ (ck/2k) ui,j. Because if

this were not so, then the greedy approximation algorithm for

STD would not have returned t′i,j+1, since the number of

remaining queries it would have satisfied would have been too

small and its known approximation bound would have been

violated – in fact, ti itself would have been a better package to

return next instead of t′i,j+1.

Thus, the aggregate weight of all queries satisfied by ti is

 )log(
2

2

1

2

1

11

,

,1, S
ck

j
ck

u
ck

uu
k

Sjrj

ji

jiji

kk







































 





Thus, the aggregate weight of all queries is

)log(
2

|||'| min S
ck

TTx
k













In summary, the above discussions demonstrate the existence

of bounded approximation factor algorithms for the MTD

problem. However, while interesting from a conceptual point

of view, in practice these approximation factors are too

suboptimal to be useful, and the algorithms themselves

require complex in-memory implementations based on semi-

definite programming (SDP) relaxation methods. More

practical approximation algorithms are needed that work well

for moderate as well as large problem instances. Such

algorithms are discussed in the next section.

5. SCALABLE APPROXIMATE

ALGORITHMS
The approximation algorithm of Section 4 is useful for

theoretical purposes, but it is not very feasible in practice.

This is because that is main memory algorithms based on

semi-definite programming (SDP) relaxation, which do not

scale for large instances. Moreover, the bounded

approximation factors are too suboptimal to be useful in

practice. This section proposes scalable approximation

algorithm MTD, which are shown to perform well in terms of

scalability and approximation error in Section 6.

The solution for MTD involves a combination of the solution

of multiple instances of STD. Miah et al. (2016) proposed an

exact algorithm for STD based on Signature Tree data

structures. A depth first creation of the signature tree is

adapted, where at each downward step it picks an attribute

that will be used as the splitting node. Further, for every

traversed node v, it checks if this node has a chance to be the

best package. That is, it compares the number of satisfied

queries in v to the current maximum number C of satisfied

queries. If v fails this test, it prunes the whole subtree rooted

at v, since the children of v satisfy at most as many queries as

v. During the depth-first traversal, it first traverses the child

that contains the maximum number of queries, since the

objective is to create an assignment of values to all attributes

that maximizes the number of satisfied queries. When it finds

the node v with the maximum C, it creates the corresponding

“best” tuple by traversing the path from v to the root and

assigning attribute values accordingly.

Figure 2 shows the pseudocode of SigTreeSTD exact

algorithm for STD (Miah et al. 2016)

http://www.ijsea.com/

International Journal of Science and Engineering Applications

Volume 6 Issue 03, 2017, ISSN-2319-7560 (Online)

www.ijsea.com 108

Fig 2. Pseudocode of SigTreeSTD exact algorithm for STD

(Miah et al. 2016)

Miah et al. (2016) also proposed an approximation algorithm

HeuristicSTD for STD, the pseudocode is shown in Figure 3.

Fig 3. Pseudocode of HeuristcSTD: approximation algorithm

for STD (Miah et al. 2016)

We consider two variants for STD: one using the exact or

optimal STD algorithm, and the other using the heuristic of

STD (Miah et al. 2016). In particular, the algorithms are as

follows:

a) Apply algorithm for STD and add solution assignment

(tuple) to result.

b) Remove the queries from the query log that are satisfied

by assignment in step (a).

c) Repeat steps (a) and (b) until no further queries or

attributes are left.

Figure 4 displays the pseudo-code of two approximation

algorithms for MTD. Note that the way that the idea of

greedily removing satisfied queries is inspired by a

SETCOVER heuristic (Cormen et al. 2001).

The SigTreeMTD algorithm has approximation bound log(S),

where S is the number of queries in Q, since the STD

component of the algorithm is exact. There is no

approximation bound for HeuristicMTD, but it is shown to

perform well in Section 6.

Fig 24. Pseudocode of SigTreeMTD and HeuristicMTD

approximation algorithms for MTD

6. EXPERIMENTS
The main performance indicators are (a) the time cost of exact

and approximation algorithms, and (b) the approximation

quality of approximation algorithms.

6.1 System Configuration and Datasets
System Configuration: We used Microsoft SQL Server 2000

RDBMS on a P4 3.2-GHZ PC with 1 GB of RAM and 100

GB HDD for our experiments. Algorithms are implemented in

C#.

Datasets: Datasets of products and product queries are used.

Note that products are just one of the possible instantiations of

the more general packages of this paper. We used real and

synthetic datasets (query logs). In specific, we use two

datasets: (i) REAL: real query log, and (ii) REAL+: synthetic

query log generated from the real query log.

Real query log (REAL): 237 queries collected for cell phones

from university users and friends through an online survey.

The survey was designed with 30 Boolean features such as

Bluetooth, Wi-Fi, Camera, Speakerphone and so on. Users

were asked to select the features they prefer to have (positive)

and most likely not to have (negative) in their cell phones.

Users selected 3-6 positive and 1-2 negative features on

average. Hard disk was a popular negative feature.

Synthetic query log generated from real query log (REAL+):
As the real query log is very small, it is inappropriate for

scalability experiments. So larger datasets were generated

from the real query log. A total of 251,575 queries were

generated as follows: at each step we randomly select a query

from the REAL query log, randomly select two of its

attributes and swap their values. We also generate datasets for

a fixed size of query log for varying number of attributes (10,

15, 20, 25, 30).

Algorithm: SigTreeSTD

Signature Tree T //initially single node u that contains all

 queries in Q, that is u=Q.

Let C be the current max # queries in a leaf node of the

signature tree. Initially C  0

Stack V

V.push(T) //T is root node of T

While V not empty do

uV.top()

If both children of u have been processed before or there

is no splitting attribute then

update C //if |u|>C then C=|u|

V.pop();

Continue;

Find next splitting attribute A for u

If |uA=0| > |uA=1| and uA=0 not processed before // uA=1 is

the

 set of queries from u that satisfy A=1 (similar for uA=0)

V.push (uA=0) //dfs to create tree for left child.

Else if uA=1 not processed before

V.push (uA=1) //dfs to create tree for right child

Return assignment for C

Algorithm: SigTreeMTD

While Q not empty do // Q is the query log

 Apply algorithm SigtreeSTD on Q

 Remove queries from Q those satisfy the assignment

Algorithm: HeuristicMTD

While Q not empty do

 Apply algorithm HeuristicSTD on Q

 Remove queries from Q those satisfy the assignment

Approx Algorithm: HeuristicSTD

Let Q be the query log, A (a1…aM) be the attributes in Q

Complement the query log (~Q) // convert 1 to 0 and 0 to

1, also convert conjunctive form to disjunctive form

For (int i = 1 to M)

If ~Q not empty

 Count # of queries satisfied both for ai = 1 and ai =

0.

 Assign the value of ai that gives the minimum count

 Remove queries from ~Q satisfied by the value of ai

Return the attributes assignment

http://www.ijsea.com/

International Journal of Science and Engineering Applications

Volume 6 Issue 03, 2017, ISSN-2319-7560 (Online)

www.ijsea.com 109

Table 2 summarizes the query logs or datasets.

Table 2. Summary of Query Logs (Datasets)

Query log # of attributes Query log size

REAL 30 237

REAL+_30 30 25K, 50K, …, 200K

REAL+_1000 10, 15, …, 30 1000

6.2 Experimental Results
Figure 5 shows the performance and quality of the algorithms

for the REAL dataset. Figures 6 and 7 show the performance

of the algorithms for varying query log size and number of

attributes respectively, for REAL+ dataset. As we can see

from the graphs, the HeuristicMTD algorithm is much more

efficient than the SigTreeMTD which is developed based on

exact algorithm of STD. The missing data in Figure 6 is due to

the very slow speed of this algorithm for large datasets. The

running time of SigTreeMTD algorithm increases

exponentially as the number of total attributes increases.

(a) Time cost (b) Quality

Fig 5. Time cost and Quality for REAL dataset

Fig 6. Time cost for varying query log size for REAL+_30

Fig 7. Time cost for varying # of attributes for REAL+_1000

Fig 8. Quality for varying query log size for REAL+_30

Fig 9. Quality for varying # of attributes for REAL+_1000

Figures 8 and 9 show the quality (number of products need to

design to satisfy all queries in the query log) of the

approximation algorithm for varying query log size and

number of attributes respectively for REAL+. For the same

reason as in Figure 6, Figure 9 also has missing data for

SigTreeMTD algorithm.

http://www.ijsea.com/

International Journal of Science and Engineering Applications

Volume 6 Issue 03, 2017, ISSN-2319-7560 (Online)

www.ijsea.com 110

7. EXTENSION TO OTHER TYPES OF

DATABASES
The Boolean problems discussed above can be extended to

categorical and numerical databases as well.

7.1 Problem Framework
Categorical: Can be converted into a set of Boolean attributes

according to its distinct categorical values.

Numeric: Comprises of a subset of attributes taking numeric

values, while the remaining attributes for which values are not

specified are assumed to be “don’t care” (represented as “?”),

i.e., in the newly designed tuple the numeric attribute can

have any value between the range of values it can take. For

e.g, query {a1=10, a3=5.2} is equivalent to “a1=10 and

a3=5.2”, while the remaining attributes are ?.

7.2 Complexity Results
Corollary 1: MTD is NP-complete for categorical databases.

It is easy to see that the reduction from GC to the Boolean

MTD instance can be readily extended to reduce GC to the

categorical MTD instance by having as many edges as the

number of distinct categorical values an attribute can take.

Corollary 2: MTD is NP-complete for numeric databases.

The proof of NP-completeness for numeric databases follows

from Corollary 1 where the distinct categorical attribute

values in the graph edges are replaced by numeric values from

the range of values that numeric attribute can have.

7.3 Numeric SigTreeMTD Algorithm
The Boolean version of the algorithm ai extended as follows.

For each attribute, let R(ai)=r1,..,rs be the set of range

conditions specified for ai in the query log Q. Let E(ai) be the

list of endpoints of the ranges in R(ai), in ascending order.

Then, we define I(ai) as the list of intervals created from E(ai),

one interval for each two consecutive endpoints. E.g. if

r1=(2,3), r2=(3,5), r3=(4,7), then E(ai)={2,3,4,5,7} and

I(ai)={[2,3], [3,4], [4,5], [5,7]}. Note that |E(ai)| ≤ 2×|Q| and

|I(ai)| ≤ 2×|Q|-1, where |Q| is the number of queries in Q.

Then, each attribute has |I(ai)| children, denoting all possible

intervals for ai. Each path from root to a node u can be viewed

as a list of intervals, one for each attribute along the path. To

compute the number of queries for u, we make a pass on Q

and count the number of queries that satisfy all the conditions

along the path from root to u. The rest of the algorithm and

pruning conditions are the same as the Boolean version, where

instead of having only two values 0,1 to choose from at each

step, we choose among the intervals in |I(ai)|.

8. RELATED WORK
The most related work to work of this paper is the the

maximal reverse problem or Single Tuple Design (STD)

Problem: Given a database (set of tuples) and a query log, the

task is to construct a new tuple such that the set of queries in

the query log that return the new tuple is larger than for any

other tuple in the database (Miah et al. 2016). However, this

paper focus on an interesting variant of the Single Tuple

Design problem. Instead of just designing a single tuple, we

are interested in creating a minimum number of tuples that

collectively satisfy all queries in the query log. This is

referred to as the Multiple Tuple Design (MTD) problem.

There is been recent interest in the area of Reverse Query

Processing for various query models such as kNN, Top-k,

skyline, and so on (Binning et al. 1994, 2007; Dellis and

Seeger 2007; Korn and Muthukrishnan 2000; Vlachou et al.

2010). Unlike traditional query processing, the applications

are not from a customer’s point of view, but rather are from

the manufacturer’s point of view, i.e., of how to determine the

set of customers that find a particular product appealing.

Reverse Nearest Neighbor (RNN) queries were first

investigated by Korn and Muthukrishnan (2000). Given any

query point q, Reverse NN is to determine the set RNN(q) of

reverse nearest neighbors. Reverse Skyline Queries (Dellis

and Seeger 2007) considers for a multidimensional data set D

the problem of dynamic skyline queries according to a query

point q. This kind of dynamic skyline corresponds to the

skyline of a transformed data space where point q becomes

the origin and all points of D are represented by their distance

vector to q. The reverse skyline query returns the objects

whose dynamic skyline contains the query object q. Recent

work on Reverse top-k queries (Vlachou et al. 2010) is from

the perspective of the product manufacturer. The problem is,

given a potential product, which are the user preferences for

which this product is in the top-k query result?

The work in this paper is different than all the works on

reverse query processing discussed above. We are not given

the set of data tuples to pick from, instead we have to design a

set of new tuples (MTD) that satisfy maximum number of

queries in the given query log. In this regard, our STD

problem is somewhat similar to maximal reverse query

processing problems that has recently received some attention

for skyline (Li et al. 2007; Li et al. 2006) and kNN (Cabello et

al. 2005; Wong et al. 2009) queries with numeric attributes.

Our work is different from these because we consider

selection queries over Boolean attributes.

Works on dominant relationship (Li et al. 2006) and

dominating neighborhood (Li et al. 2007) uses skyline query

semantics assuming that attributes are min/max, that is, all

users have the same preference for an attribute (e.g., 2 doors is

always better than 4 doors). Further, they assume there is a

profitability plane which simplifies the algorithm given that

the optimal solution is a point on the profitability plane. In

contrast, in work of this paper along with the work of Miah et

al. (2016) users may have opposite preferences for the same

attribute, and the algorithms can be used with or without a

profitability plane.

Miah et al. (2009) tackled another related problem of

maximizing the visibility of an existing object by selecting a

subset of its attributes to be advertised. The main problem

was: given a query log with conjunctive query semantics and

a new tuple, select a subset of attributes to retain for the new

tuple so that it will be retrieved by the maximum number of

queries. The work did not consider negated conditions as in

the work of this paper.

Optimal product design or positioning is a well-studied

problem in Operations Research and Marketing. Shocker and

Srinivasan (1974) first represented products and consumer

preferences as points in a joint attribute space. After that,

several approaches and algorithms (Albers and Brockhoff

1977; Albers and Brockhoff 1980; Albritton and McMullen

2007; Gavish et al. 1983; Gruca and Klemz 2003; Kohli and

Krishnamurti 1989) have been developed to design/position a

new product. Works in this domain require direct involvement

(one or two step) of consumers and users are usually shown a

set of existing alternative products (predesigned) to choose or

set preferences. Users in this domain in fact do not get to

select the attributes or features they like and do not like.

Instead of involving users directly in the process of designing

new products, this paper uses previous user search queries to

model user preferences, since it is easy to collect the

preferences (search queries) for large number of Internet users

http://www.ijsea.com/

International Journal of Science and Engineering Applications

Volume 6 Issue 03, 2017, ISSN-2319-7560 (Online)

www.ijsea.com 111

nowadays. This paper also consider large query logs to design

the new set of products and allow users to express their

interests in attribute or feature level in terms of positive,

negative and “don’t care”.

The MTD problem can be viewed as the segmentation

problem (Kleinberg et al. 1998) for the STD problem (Miah et

al. 2016). However, in MTD the size of each segment is not

given.

9. CONCLUSIONS
This paper investigated the problem of designing smallest set

of tuples for maximal reverse selection queries - given a set of

selection queries with conjunctive conditions (where a query

can have negations), create the smallest set of tuples that that

collectively satisfy all queries in the query log. The problem

has several natural applications, such as designing best

vacation packages, designing new products, and so on. The

paper shows the difference of the proposed problem from the

existing techniques in various fields such as marketing,

product design, operation research, query processing, etc. The

paper considers several interesting variants of the problem as

well as various types of databases such as Boolean,

categorical, and numerical. It proves intractability results, and

provide approximation algorithms, some of which are shown

to work well in practice. A future direction is to extend the

problem to develop more scalable algorithms for categorical,

numeric, and possibly text data and different query semantics

such as top-k and skyline queries.

10. REFERENCES
[1] Albers, S., and Brockhoff, K. “A procedure for new

product positioning in an attribute space”, European

Journal of Operational Research, 1, 4 (Jul 1977), 230-

238.

[2] Albers, S., and Brockhoff, K. “Optimal Product

Attributes in Single Choice Models”, Journal of the

Operational Research Society (1980) 31, 647–655.

[3] Albritton, D. M., and McMullen P. R. “Optimal product

design using a colony of virtual ants”, European Journal

of Operational Research, 176, 1 (Jan 2007), 498-520.

[4] Cabello, S., Diaz-Banez, J. M., Langerman, S., Seara, C.,

and Ventura, I. 2005. “Reverse facility location

problems”, Canadian Conference on Computational

Geometry.

[5] Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein,

C. 2001. Introduction to Algorithms, The MIT Press.

[6] Dellis, E., and Seeger, B. 2007. “Efficient computation

of reverse skyline queries”, VLDB.

[7] Garey, M. R., and Johnson, D. S. 1979. Computers and

Intractability: A Guide to the Theory of NP-

Completeness, New York, W.H. Freeman, ISBN 0-7167-

1045-5.

[8] Gavish, B., Horsky, D., and Srikanth, K. 1983. “An

Approach to the Optimal Positioning of a New Product”,

Management Science, 29, 11, 1277-1297.

[9] Gruca, T. S., and Klemz, B. R. 2003. “Optimal new

product positioning: A genetic algorithm approach”,

European J. of Operational Research, 146, 3, 621-633.

[10] Kleinberg, J., Papadimitriou, C., and Raghavan, P.1998.

“Segmentation Problems”, ACM Symposium on the

Theory of Computing, 473-482.

[11] Kohli, R., Krishnamurti, R. 1989. “Optimal product

design using conjoint analysis: Computational

complexity and algorithms”, European Journal of

Operational Research, 40,186–195.

[12] Korn, F., Muthukrishnan, S. 2000. “Influence sets based

on reverse nearest neighbor queries”, SIGMOD.

[13] Li, C., Tung, A. K. H., Jin, W., and Ester, M. 2007. “On

Dominating Your Neighborhood Profitably”, VLDB,

818-829.

[14] Li, C., Ooi, B. C., Tung, A. K. H., Wang, S. 2006.

“DADA: a Data Cube for Dominant Relationship

Analysis”, SIGMOD.

[15] Miah, M., Das, G., Hristidis, V., and Mannila, H. 2009.

“Determining Attributes to Maximize Visibility of

Objects”, IEEE Transactions on Knowledge and Data

Engineering (TKDE) vol. 21 no. 7, pp. 959-973.

[16] Miah, M., Omar, A. 2016. The International Academy of

Business and Public Administration Disciplines

(IABPAD) Conference Proceedings.

[17] Shocker, A. D., and Shrinivasan, V. 1974. “A consumer-

based methodology for the identification of new product

ideas”, Management Science, 20, 6, 921-937.

[18] Vlachou, A., Doulkeridis, C., Kotidis, Y., and Norvag,

K., 2010. “Reverse Top-k Queries”, ICDE.

[19] Wong, R. C-W., Özsu, M. T., Yu, P. S., Fu, A. W-C.,

and Liu, L. 2009. “Efficient method for maximizing

bichromatic reverse nearest neighbor”, VLDB.

http://www.ijsea.com/
http://www.amazon.com/Ronald-L.-Rivest/e/B000AQ24MQ/ref=ntt_athr_dp_pel_3
http://www.amazon.com/exec/obidos/search-handle-url/ref=ntt_athr_dp_sr_4?%5Fencoding=UTF8&search-type=ss&index=books&field-author=Clifford%20Stein
http://en.wikipedia.org/wiki/Michael_Garey
http://en.wikipedia.org/wiki/David_S._Johnson
http://en.wikipedia.org/wiki/Computers_and_Intractability:_A_Guide_to_the_Theory_of_NP-Completeness
http://en.wikipedia.org/wiki/Computers_and_Intractability:_A_Guide_to_the_Theory_of_NP-Completeness
http://en.wikipedia.org/wiki/Computers_and_Intractability:_A_Guide_to_the_Theory_of_NP-Completeness
http://en.wikipedia.org/wiki/Special:BookSources/0716710455
http://en.wikipedia.org/wiki/Special:BookSources/0716710455
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/l/Li:Cuiping.html
http://www.informatik.uni-trier.de/~ley/db/conf/vldb/vldb2007.html#LiTJE07
http://www.informatik.uni-trier.de/~ley/db/conf/sigmod/sigmod2006.html#LiOTW06
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/d/Das:Gautam.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/h/Hristidis:Vagelis.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/m/Mannila:Heikki.html
http://www.informatik.uni-trier.de/~ley/db/conf/icde/icde2008.html#MiahDHM08

