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Abstract: This article presents a new theorem concerning the distribution of prime numbers: Let integer n ≥ 4, then there exist two 

distinct odd primes p and q such that n ﹣p ＝ q ﹣n. The proof of the theorem is established by using the congruence theory and Fermat's 

method of infinite descent. Moreover, several results are presented to highlight the significance of the theorem. 
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1. INTRODUCTION 
A classical problem in the Number Theory is to understand the 

distribution of prime numbers. 

Although, this problem is still fundamentally unsolved, there 

exist, however, many valuable results including the famous 

Bertrand's Postulate [1]. The theorem states that there exists 

at least a prime q such that n＜q≤2n for every integer n≥1. 

This result makes a rough description but gives a strict density 

lower bound of distribution of primes. From Bertrand’s 

postulate we obtain: 

 

Lemma 1.1. Let n≥4 be an integer, then there exists at least 

an odd prime q such that n＜q＜2n. 

Furthermore, the smallest element in all odd primes is 3 which 

is less than every integer n≥4. Combined with Lemma 1.1, 

another significant conclusion can be made: 

 

Lemma 1.2. Let n≥4 be an integer, then there exist two odd 

primes p and q such that 3≤p＜n＜q＜2n.  

 

For any two distinct odd primes p and q, if we count from p to 

q, the number of the counting must be odd and not less than 3. 

Assume that it is 2d+1 with d≥1, then there exists an integer 

n≥4 such that n ﹣p＝d, q ﹣n＝d, and n ﹣p＝q ﹣n. Naturally, a 

proposition can be deduced: for every integer n≥4, there exist 

at least two odd primes p and q such that n﹣p＝q﹣n with 3≤p＜

n＜q＜2n. This means that any two distinct odd primes are 

symmetrically distributed about an integer n≥4, and for every 

integer n≥4, there exist at least two distinct odd primes that 

are symmetrically distributed about the integer.  

If the proposition statement is true, then, since n﹣p＝q﹣n ⇔ n

＝(p﹢q)/2, the completeness which contains in the proposition 

statement establishes a clear quantity relationship between 

every integer n≥4 to two distinct odd primes p and q. This  

 

 

means that every integer n≥4 can be written as the arithmetic 

average of two distinct odd primes p and q.  

            Moreover, in positive integers, the above-mentioned 

proposition along with the following set of propositions 

presents a significant result in mathematical logic, 

           (i) Let n≥2, there exist two distinct odd numbers a1 and 

a2 such that n﹣a1＝ a2﹣n.  

           (ii) Let n≥3, there exist two distinct even numbers b1 

and b2 such that n﹣b1＝b2﹣n.   

           (iii) Let n≥4, there exist two distinct odd primes c1(p) 

and c2(q) such that n﹣c1＝c2﹣n. 

           (iv) Let n≥5, there exist two distinct even composites 

d1 and d2 such that n﹣d1＝d2﹣n. 

The propositions (i), (ii) and (iv), can be proved by induction. 

For proposition (iii), this article proposes the necessary and 

sufficient condition for its validity and applies the 

Congruence Theory and the Fermat's method of infinite 

descent to prove the proposition.  

        

Theorem.  Let n≥4 be an integer, then there exist two distinct 

odd primes p and q such that 

                                              

                                        n﹣p＝q﹣n.                             (1) 

 

2. PROOF OF THE THEOREM 
Proof. Let n≥4 be an integer and p1,p2,p3,…,pk be all odd 

primes which are less than the integer n(≥4). Since p1＝3, p1

＜4≤n, then for k≥1 in positive integers, there always exist k 

odd integers q1,q2,q3,…,qk and n＜qk＜…＜q2＜q1＜2n, such 

that n ﹣pi＝ qi ﹣n and qi＝ 2n ﹣pi for all 1≤i≤k. Let P＝｛

p1,p2,p3,…,pk｝and Q＝｛q1,q2,q3,…,qk｝, where, P and Q be 

non-empty sets which correspond one-to-one by equation n﹣pi

＝qi﹣n for all 1≤i≤k. If there exist two distinct odd primes p 

and q such that n﹣p＝q﹣n, then p∈P and q∈Q. Since every pi is 

odd prime for all 1≤i≤k and if there exists at least an odd 
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prime q in Q, then the odd prime q and the odd prime p∈P 

correspond one-to-one with the q such that n ﹣p＝q﹣n. This 

proves the Theorem. Now the necessary and sufficient 

condition for the Theorem can be established as: for every 

integer n≥4, there exists at least one odd prime q among qi in 

the Q for all 1≤i≤k.  

In the following, we prove the necessary and sufficient 

condition to be tenable and conclude that the Theorem 

statement is true.  

 Suppose there exist some integers (≥4) such that the 

necessary and sufficient condition statement does not hold. 

Let n0 be the smallest in them, then every qi in the Q of n0 is 

odd composite for all 1≤i≤k, and we get Ω(qi)≥2 for all 1≤i≤k. 

Let ui be the smallest and vi be the second odd prime divisors 

of qi for all 1≤i≤k, then 3≤ui≤vi  and uivi︱qi  for all 1≤i≤k. 

Where n＝n0 and we take P0＝｛p1,p2,p3,…,pk｝, Q0＝｛

q1,q2,q3,…,qk｝, U0＝｛u1,u2,u3,…,uk｝, 

V0＝｛v1,v2,v3,…,vk｝, then there must be U0⊆P0 , V0⊆P0. 

  Since qi＝ 2n0 ﹣ pi for all 1≤i≤k, then uivi∣qi ⇒uivi∣2n0 ﹣ pi 

⇒2n0≡pi(mod uivi) ⇒ 

2n0≡pi(mod ui)  for all 1≤i≤k. Then, we have the system of k 

congruences

                                  

                       x≡pi (mod ui)           for all 1≤i≤k.                     (2)  

                                      

with 2n0 as its solution. 

           Assume n0≡ri(mod ui) and 1≤ri≤ui for all 1≤i≤k, then n0

﹢n0≡ri﹢ri (mod ui) for all 1≤i≤k  ⇒ 2n0≡2ri (mod ui) for all 

1≤i≤k, and pi≡2n0(mod ui) for all 1≤i≤k  ⇒  pi≡2n0≡2ri (mod 

ui) for all 1≤i≤k. 

Then we have the system of congruences (2) equivalent to the 

system of congruences 

                                                          

                   x≡2ri(mod ui )          for all 1≤i≤k.                     (3) 

                         

In addition, the system of congruences   

                        

y≡r i (mod ui )       for all 1≤i≤k.                     (4) 

                                 

has a solution n0. 

  To verify, we take n＝ 4,5,6,7,8. The Theorem is true, 

therefore, n0＞8, and since n= n0, there exist k≥3 with pk≥7. 

Moreover, by Bertrand's Postulate, we know there exists at 

least an odd prime g such that pk＜g＜2pk , and n0 must be 

such that pk＜n0≤g＜2pk, 2pk＞n0, and 4pk＞2n0. If pk∈U0 , 

pk∣qi , qi∈Q0 , and since pk≥7, and vi correspond with pk, we 

have vi≥pk≥7＞4, 2n0＞qi＞n0,  then vipk＞4pk＞2n0＞qi, 

qi∈Q0, which contradicts vipk︱qi , qi∈Q0. Hence, we get pk 

∉U0 , and｛u1,u2,u3,…,uk｝⊆｛p1,p2,p3,…, pk-1｝, 

by Pigeonhole Principle, we know there exist at least two of 

the same elements in U0.  

Since n0＞8, k≥3, p1＝3, p2＝5, p3＝7, and qi＝2n0﹣pi  for all 

1≤i≤k, then q1﹣q2＝(2n0﹣3)﹣(2n0﹣5)＝2, q2﹣q3＝(2n0﹣5)﹣(2n0﹣7)＝

2, q1﹣q3＝(2n0﹣3)﹣(2n0﹣7)＝4, and we get q1, q2,q3 are pairwise 

relatively prime odd composites, thus u1, u2, u3 are pairwise 

relatively primes, and u1, u2, u3 are three distinct odd primes. 

Assume that there exist uh＝u2 and u1,u3,…,uh (u2),…,uk that 

are pairwise relatively primes in U0, then there must be 

4≤h≤k, and u1u3…uh(u2)…uk ＝ [u1,u2,u3,…,uh,…,uk]. In 

addition, we have, 2n0≡p2( mod uh ), 2n0≡ph( mod uh ), 

2n0≡p2≡ph( mod uh ), 2r2＝2rh. Then there exist 

x≡p2( mod u2 ) ⇔ x≡ph( mod uh ) in (2),  x≡2r2( mod u2) ⇔ 

x≡2rh( mod uh ) in (3), and y≡r2( mod u2) ⇔ y≡rh( mod uh)  in 

(4). 

  By the Chinese Remainder Theorem, we get the set of all 

solutions to the system of congruences (2) or (3) as 

                                               

             x≡p1U1U1
-1＋p3U3U3

-1＋…＋phUhUh
-1＋…＋pkUkUk

-

1,                               (5.1) 

                                       

         ≡2r1U1U1
-1＋2r3U3U3

-1＋…＋2rhUhUh
-1＋…＋2rkUkUk

-

1 (mod u1u3…uh…uk).  (5.2) 

                                                

         In addition, the set of all solutions to the system of 

congruences (4) is given as 

          

             y≡r1U1U1
-1＋r3U3U3

-1＋…＋rhUhUh
-1＋…＋rkUkUk

-1 

(mod u1u3…uh…uk ),       (6) 

                

         where, u1u3…uh…uk＝[u1,u2,u3,…,uh,…,uk]＝ui U i for 

all 1≤i≤k, i≠2. 

Moreover, U i
-1

 is a unique integer such that 

                                 

 UiU i 
-1≡1(mod ui )      for all 1≤i≤k.                  (7) 

                                    

         By taking 2n0 as a solution to the system of congruences 

(2) or (3), then   

 

   2n0≡p1U1U1
-1＋ p3U3U3

-1＋…＋ phUhUh
-1＋…＋ pkUkUk

-

1(modu1u3…uh…uk).      (8)    

                   

         Since 2n0≡ph≡p2 (mod u2), ph＞ p2, we get 2∣ph ﹣ p2, 

u2(uh)∣ph﹣p2.  

Let ph﹣p2＝2t, then t＞0, u2 (uh)∣2t, u2 (uh)∣t, and  

 

UhUh
-1＝U2U2

-1,  phUhUh
-1＝ (p2＋2t )U2U2

-1＝p2U2U2
-1＋

2tU2U2
-1 ,        (9) 
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         Then, we have   

 

 2n0≡p1U1U1
-1 ＋ p2U2U2

-1 ＋ 2tU2U2
-1 ＋ p3U3U3

-1 ＋ … ＋
pkUkUk

-1(mod u1u3…uh…uk),  (10) 

                                 

          2n0≡2r1U1U1
-1＋2r2U2U2

-1＋2r3U3U3
-1＋…＋2rkUkUk

-1

＋2tU2U2
-1(modu1u2u3…uk),  (11) 

                       

n0≡r1U1U1
-1＋ r2U2U2

-1＋ r3U3U3
-1＋…＋ rkUkUk

-1＋ tU2U2
- 

1(mod u1u2u3…uk),    (12) 

                                  

                  n0≡r1U1U1
-1＋ r2U2U2

-1＋ r3U3U3
-1＋…＋ rkUkUk

-1

＋tU2U2
-1(modu2),       (13) 

                  

            n0≡r1U1U1
-1＋r2U2U2

-1＋r3U3U3
-1＋…＋rkUkUk

-1＋t ( 

modu2 ).        (14) 

              

Since u2∣t, then, 

             

            n0≡r1U1U1
-1＋ r2U2U2

-1＋ r3U3U3
-1＋…＋ rkUkUk

-1＋
u2(mod u2).       (15) 

Assume                  

n0＝ r1U1U1
-1＋ r2U2U2

-1＋ r3U3U3
-1＋…＋ rk UkUk

-1＋ u2 ,          

(16) 

         Then, 

       n0 ﹣u2＝ r1U1U1
-1＋ r2U2U2

-1＋ r3U3U3
-1＋…＋ rkUkUk

-1 .               

(17) 

         Moreover, 

n0 ﹣ u2≡r1U1U1
-1＋ r2U2U2

-1＋ r3U3U3
-1＋…＋ rkUkUk

-1 (mod 

u1u2u3…uk ).    (18) 

         

Let n1＝n0﹣u2, then we have 

  

       n1＝ r1U1U1
-1＋ r2U2U2

-1＋ r3U3U3
-1＋ …＋ rkUkUk

-1 ,                     

(19) 

                

n1≡r1U1U1
-1 ＋ r2U2U2

-1 ＋ r3U3U3
-1 ＋ … ＋ rkUkUk

-1 (mod 

u1u2u3…uk ) ,        (20) 

                                 

and hence, 

               n1≡ri (mod ui)   for all 1≤i≤k .                  (21) 

                                

Since ui∣qi and qi＜2n0 for all 1≤i≤k, then ui≤ qi ＜ 2n0  ＜

1.42 n0  for all 1≤i≤k, u2≤ q2＜ 2n0  ＜1.42 n0  . By 

taking k≥h≥4, n0＞p4 (＝11)＞9, n0  ＞3,       n0＝ n0  n0  

＞3 n0  , then n0 ﹣u2＞n0 ﹣ 1.42 n0  , n0 ﹣1.42 n0  ＞3 n0  ﹣

1.42 n0  ＝1.58 n0  ＞ 2n0  ＞ui for all 1≤i≤k, and we get n0

﹣u2＞ 2n0  ＞ui for all 1≤i≤k, and hence n1＞ui for all 1≤i≤k.

  

We know there exist at least three distinct odd primes u1,u2 

and u3 in U0, and n1＞u i for all 1≤i≤k. then we have at least 

three distinct odd primes u1,u2,u3 less than n1. Let p1, p2, 
p3,…,ps be all odd primes which are less than integer n1, and s 

not less than 3, then 3≤s≤k, p3 (＝7)≤ps≤pk , and n1≥8.   

Then, we get  

  n1≡ri(mod ui)   for all 1≤i≤s ,                   (22) 

                                        

  2n1≡2ri(mod ui)  for all 1≤i≤s ,                   (23) 

                         

                                2n1≡pi ( mod ui)  for all 1≤i≤s .                   

(24) 

                                        

         From (24) we have, ui∣2n1﹣pi＝qi for all 1≤i≤s, and ui＜

n1＜qi＝2n1﹣pi for all 1≤i≤s, which shows ui＜qi and ui∣qi for 

all 1≤i≤s. Since n＝n1(≥8), each odd prime pi which is less 

than n1, and every qi＝2n1﹣pi such that n1﹣pi＝qi﹣n1, be odd 

composite for all 1≤i≤s. Therefore, n1 also does not make the 

necessary and sufficient condition statement tenable and n1＜
n0 contradicts the minimality of n0 which is impossible. 

 To sum up, there exist no integer n≥4 for which the necessary 

and sufficient condition for the Theorem does not hold. 

Therefore, there must exists at least one odd prime q in the Q 

of every integer n≥4. Thus, the necessary and sufficient 

condition for the Theorem being tenable is proved. This 

completes the proof of the Theorem.                       □ 

 

3. EQUIVALENT PROPOSITION OF 

THE THEOREM  
Let n≥4 be an integer, then there exists at least one positive 

integer d with 1≤d≤n ﹣3, such that n ﹣d and n + d are odd 

primes. 

                                   

In particular if d＝1, then｛n﹣1 , n﹢1｝be twin primes. Then 

the accurate mathematical  

formulas of d＝f ( n, p＜n, n﹣p ,…, p|n ) have very important 

theoretical significance and 

practical values. 

 

4. GEOMETRIC SIGNIFICANCE OF 

THE THEOREM  
(i) On real axis, there exist two distinct odd prime 

points p and q be symmetrically distributed about every integer point 

n≥4.  
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(ii) On real axis, every integer point n≥4 be the midpoint of 

the line segment with two distinct odd primes p and q as 

endpoints.   

. 

5. THREE COROLLARIES OF THE 

THEOREM  
 

Corollary 5.1. Let n≥4 be an integer and p1, p2,… ,pk  be all 

odd primes which are less than n, then the equation n﹣pi＝xi﹣n 

has no solution, where xi is odd composite for all 1≤i≤k.  

 

Proof．The proof of the Corollary 5.1 is the same as the proof 

of the Theorem.          □ 

                      

Corollary 5.2. Every integer n≥2 can be written as the 

arithmetic average of two primes. 

  

Proof． From the Theorem, for integer n≥4 there exist two 

distinct odd primes p and q such that n﹣p＝q﹣n, and n﹣p＝q﹣n 

⇔ n＝( p﹢q )/2, then we get: Every integer n≥4 can be written 

as the arithmetic average of two distinct odd primes. 

 Moreover, since 3＝(3﹢3)/2 and 2＝(2﹢2)/2, following results 

can be deduced: 

Every integer n≥3 can be written as the arithmetic average of 

two odd primes. 

Every integer n≥2 can be written as the arithmetic average of 

two primes. 

This completes the proof.                                                   □  

       

Corollary 5.3. (Goldbach conjecture [2])  Every even number 

2n≥4 can be written as the sum of two primes. 

 

Proof．Let 2n≥8 be an even number, then n≥4 and by the 

results in the proof of the Corollary 5.2, there exist two 

distinct odd primes p and q such that n＝( p﹢q ) /2 for every 

integer n≥4, and 2n (≥8)＝2·n (≥4)＝2·(p﹢q) / 2＝p﹢q, hence: 

 Every even number 2n≥8 can be written as the sum of two 

distinct odd primes. 

  According to the same principle, by the conclusions of the 

Corollary 5.2, following two results can be found: 

Every even number 2n≥6 can be written as the sum of two 

odd primes. 

 Every even number 2n≥4, or every even composite, can be 

written as the sum of two primes. 

This completes the proof.                                                    □ 
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