
International Journal of Science and Engineering Applications (IJSEA)
Volume 2 Issue 4,2013, ISSN-2319-7560 (Online)

71

WWW.IJSEA.COM

Building Software Architecture using Architectural
Design Patterns

U.V.R. Sarma

Department of CSE
CVR College of Engg.

Ibrahimpatan(M),
R.R. District, A.P., India

Neelakantam Pavani
Department of IT

CVR College of Engg.
Ibrahimpatnam(M)

R.R. District, A.P., India

 P. Premchand
Osmania University,
Department of CSE,

Hyderabad, A.P., India

Abstract: this paper discusses how Software Architectural design patterns could be used to build the architecture of a system. The
application of design patterns helps to improve the quality of software architecture and to reduce the flaws in the architecture. Generic
architectural design patterns for real-time software components are customized to suit the functionality of system. This is illustrated
using the Solar TErrestrial RElations Observatory (STEREO) a case study based on NASA’s STEREO mission. The customized
design patterns are validated using IBM Rational Rhapsody. These validated design patterns form templates for further use in building
the architecture of flight software.

Keywords: Software Architectural Design Patterns, UML 2.0, IBM Rational Rhapsody Developer for Java, Flight Software,
Components.

1. INTRODUCTION
This paper customizes generic design patterns to suit the
functionality of Solar Terrestrial Relations Observatory
(STEREO). The Design Patterns are built and also validated
using IBM Rational Rhapsody. The variability in the design
patterns can also be represented in the diagrams by using
Product Line UML based Software Engineering methodology
by Gomaa [1] to enable the use of design patterns for any
other systems in DRE domain.

 The STEREO case study is chosen as the number of flight
software anomalies are increasing in number and also as they
lead to major losses [2]. Thus as per the functionality of
STEREO ten generic design patterns are identified and are
customized to suit the functionality of STEREO. The
functionality of each component of STEREO is depicted by
using state charts. The paper uses the IBM Rational Rhapsody
developer for Java 7.6.1 to build the design patterns and also
to build and validate the state charts. Validating the design
patterns and state charts will better describe the functionality
of each component of the system and will check the design
patterns for their functional correctness.

2. TOOL SUPPORT : IBM RATIONAL
RHAPSODY
This paper uses a tool called IBM Rational Rhapsody
Developer for Java 7.6.1 to build and execute the state
machines [3]. The generic design patterns are customized and
validated using the tool. The functionality of the components
in the design patterns can be depicted in Rational Rhapsody
by using the Rhapsody’s Action language which is similar to
java and Event handling infrastructure.

IBM Rational Rhapsody’s action language can be used to
capture actions and to execute the model. This action
language can be used to make the diagrams executable by
representing the actions each object performs and also the
messages the objects pass to other objects when an event
occurs. The message passing can be represented in state
charts, by depicting the message passing and the respective

transitions. The action language is similar to Java, except
there are a few additional reserved words. For example, GEN
is a reserved word used to generate asynchronous messages as
events. The messages must be specified on the consumer’s
provided interface in order to be invoked.

 Ex: PClass1.gen(new msg());

Where PClass1 is the provided interface which also specifies
the port through which the message is sent and msg() method
that is called to implement the appropriate task. Code for
these methods can be written using the action language. When
an event is generated, IBM Rational Rhapsody event handling
infrastructure handles the routing of events from the producer
to the consumer. When the consumer component receives the
event, the appropriate state transition is taken and actions
within that state are performed. Thus, executable state charts
represent the functional behavior of the components of the
system. However the coding required for IBM Rational
Rhapsody differs by the Object eXtended Framework (OXF)
involved which depends on the Developer Edition (Java or
C++). That is the action language semantics and syntax differs
based on the OXF.

IBM Rational Rhapsody is an excellent tool to create dynamic
UML diagrams using Real-time UML that is UML 2.0. These
executable state charts and Object Model Diagrams can be
validated using Rational Rhapsody. Rhapsody is also used to
generate code for the diagrams.

3. UML 2.0 AS ARCHITECTURAL
DESCRIPTION LANGUAGE (ADL)
The Unified Modeling Language (UML 1.0) [4] was first
introduced as a formal graphical language to represent the
system as static diagrams but was later revised to represent the
functionality of components of real-time systems as UML 2.0
also called as Real-Time UML.

Architecture Description Language (ADL) is defined as “a
language (graphical, textual, or both) for describing a software
system in terms of its architectural elements and the
relationship among them” [4]. UML is widely accepted
language by practitioners. This paper uses UML 2.0 to
represent the components of the systems in terms of an Object
Model diagram and state chart diagrams. The UML 2.0

International Journal of Science and Engineering Applications (IJSEA)
Volume 2 Issue 4,2013, ISSN-2319-7560 (Online)

72

WWW.IJSEA.COM

diagrams are represented using the Component and Connector
views (C&C views, for short) [5]. They present architecture in
terms of elements that have a runtime presence (e.g.,
processes, clients, and data stores) and pathways of interaction
(e.g., communication links and protocols, information flows,
and access to shared resources). Components are the principal
units of run-time interaction or data storage. Connectors are
the interaction mechanisms among components. The UML
extensibility mechanisms (i.e., stereotypes, tagged values,
constraints) are used to interpret the functionality of the
system in the diagrams [6].

In UML 2.0, the components are created as Composite classes
and each of the components should have ports to interact with
the external environment. Each port again requires an
interface for it to interact. The interfaces are of two types
Provided Interface and Required Interface. Two components
with ports and their interfaces can be linked for
communication. The ports and their interfaces should be
compatible, that is one component having a required interface
(depicted as semi circle) can interact with only a component
that provides the interface (depicted as full circle).

4. SOLAR TERRESTRIAL RELATIONS
OBSERVATORY (STEREO)
The STEREO mission is a two year mission from NASA with
a goal to provide the first ever three dimensional images of
the Sun by studying the nature of Coronal Mass Ejections
(CME). The mission involves using two nearly identical
three-axis stabilized spacecraft in heliocentric orbit, which is
an orbit around the sun. Since the spacecraft is far away from
Earth, the STEREO FSW relies less on real-time ground
commanding and more on autonomous functionality.
Additionally, since STEREO operates in a heliocentric orbit it
requires guidance and control algorithms along with
propulsion hardware to achieve and maintain its orbit.

The STEREO spacecraft contains four payload instrument
packages to accomplish its scientific mission. The payload
packages are In-situ Measurements of Particles And CME
Transients (IMPACT), PLAsma and SupraThermal Ion
Composition (PLASTIC), STEREO/WAVES (S/WAVES),
and Sun Earth Connection Coronal and Heliospheric
Investigation (SECCHI). The IMPACT package measures
solar wind electrons, energetic electrons, protons, heavier
ions, and the in situ magnetic field strength and direction.
PLASTIC measures the composition of heavy ions in the
ambient plasma, protons, and alpha particles. S/WAVES
measures the generation and evolution of traveling radio
disturbances. Finally, SECCHI uses remote sensing imagers
and coronagraphs to track CMEs.

The payload instruments collect data 24 hours a day, even
when the spacecraft is in communication with the ground.
During events of interest, the FSW must also enable the
appropriate instruments to collect data at higher sampling
rates. The FSW is responsible for performing some processing
on the data such as data compression and formatting the data
into telemetry packets. Additionally, the FSW must collect
and store data from all the payload packages. The data is
pushed from the instrument data buffers to the FSW during
predetermined time intervals and using predefined data rates.

STEREO maintains its orientation in space using a three-axis
stabilization technique, as opposed to a spin stabilization
technique. In STEREO’s three-axis stabilization technique,
reaction wheel assemblies (RWAs) are mounted on various
sides of the spacecraft and the appropriate RWAs are fired to

make slight changes to the spacecraft’s orientation. To adjust
the spacecraft’s attitude, adjustments are managed by firing
thrusters to push STEREO to the proper attitude. Attitude
determination and control is managed autonomously onboard
the spacecraft by the FSW. The FSW determines the attitude
and orientation using measurements from one star tracker, six
sun sensors, and one Inertial Reference Unit (IRU). If the
FSW determines that the attitude and orientation are out of the
acceptable range, then it must determine and send the
appropriate commands to the RWAs and/or thrusters to adjust
the spacecraft’s attitude.

STEREO uses two movable solar array appendages to
generate power. The FSW is responsible for positioning the
solar arrays toward the sun. Onboard power is controlled
using a Power Distribution Unit (PDU). To maintain a
consistent temperature, STEREO spacecraft uses both active
and passive means of thermal control. The active measurers
include thermistors and electric heaters to ensure the
spacecraft remains a consistent temperature throughout the
spacecraft since one side of the STEREO is facing the Sun
and the other does not. The FSW is responsible for monitoring
the spacecraft temperatures and sending commands to the
appropriate heaters to adjust the temperature. STEREO
downlinks its data once per day to the ground through
NASA’s Deep Space Network (DSN) station in Canberra,
Australia. To communicate with the ground, STEREO
contains a Low Gain Antenna (LGA), Medium Gain Antenna
(MGA), and High Gain Antenna (HGA) that will be used
depending on where the spacecraft is in orbit. The FSW is
responsible to selecting and using the right antenna at the right
time. The LGA and MGA are fixed, however the STEREO
FSW is responsible for autonomously controlling the HGA so
that is pointed at Earth.

Based on the functionality of STEREO ten design patterns
have been identified to depict the functionality of STEREO.
The design patterns identified are listed in the table 1.

Table 1. STEREO Design Patterns

Feature Design Pattern
High Volume Command
Execution

STEREO Hierarchical
Control Design Pattern

High Volume Telemetry
Storage and Retrieval

STEREO Compound
Commit Design Pattern

High Volume Telemetry
Formation

STEREO Pipes and Filters
Design Pattern

Quick Check STEREO Sanity Check
Event Driven Payload Data
Collection

STEREO Payload data
Client Server Design
Pattern

Ground Driven
Housekeeping Data
Collection

STEREO Housekeeping
data Multiple Client
Multiple Server Design
Pattern

Event Driven Housekeeping
Data Collection

STEREO Housekeeping
data Client Server Design
Pattern

Housekeeping Data Checks STEREO Housekeeping
Checks Multicast

Spacecraft Clock STEREO Spacecraft Clock
Multicast

Memory storage Device
fault Detection

STEREO Memory Storage
Device Watchdog.

The reason for selecting the above Design patterns is
described below:

International Journal of Science and Engineering Applications (IJSEA)
Volume 2 Issue 4,2013, ISSN-2319-7560 (Online)

73

WWW.IJSEA.COM

4.1. Hierarchical Control Design Pattern:
STEREO FSW must interact with ten components to
implement its functionality. Hierarchical controller would be
appropriate to implement such functionality where a separate
controller is identified for components implementing similar
actions. Example a Payload subsystem controller is identified
to control the behavior of the four payload devices of
STEREO. Thus a hierarchical control design pattern best
suites the working of STEREO.

4.2. Compound Commit:
The data collected from different instruments of STEREO is
to be stored or retrieved in a "all-or-nothing" methodology.
That is either all the telemetry data is to be stored or nothing
is to be stored by the components, similarly for retrieval of
telemetry data.

4.3. Pipes and Filters Design Pattern.
The transformation of information into telemetry packets is
done by Pipes and Filters Design Pattern. It increases
throughput capacity of the system by adding multiple
homogeneous (identical) channels.

4.4 Sanity Check
The Sanity Check design pattern is a pattern to improve
reliability and ensure that the system performs more or less as
expected. If a problem is detected, then the system is put into
a failsafe state, which is a state that is always known to be
safe. This design pattern is included because it provides a
level of reliability to the Pipes and Filter design pattern. This
design pattern is suitable to use on DRE applications that have
reliability requirements but do not have high availability
requirements.

4.5 Payload Data Multiple Client Multiple
Server Pattern
The STEREO spacecraft contains four payload instrument
packages to accomplish its scientific mission. The payload
packages are In-situ Measurements of Particles And CME
Transients (IMPACT), PLAsma and SupraThermal Ion
Composition (PLASTIC), STEREO/WAVES (S/WAVES),
and Sun Earth Connection Coronal and Heliospheric
Investigation (SECCHI). The IMPACT package measures
solar wind electrons, energetic electrons, protons, heavier
ions, and the in situ magnetic field strength and direction.
PLASTIC measures the composition of heavy ions in the
ambient plasma, protons, and alpha particles. S/WAVES
measures the generation and evolution of traveling radio
disturbances. Finally, SECCHI uses remote sensing imagers
and coronagraphs to track CMEs. A separate client and server
for each of the payload instruments are created to collect the
information whenever the controller signals to collect.

4.6. Housekeeping Multiple Client Multiple
Server Design Pattern
The health of the satellite is maintained by collecting the
information of the health or working of each of the
component. This information is sent to the ground station. The
ground station checks this information and sends any signals
if necessary to check and modify the components. The
collection of housekeeping information is done by this Design
Pattern. Again a separate client and server component is
created for ten components of STEREO.

4.7. Housekeeping Data Client-Server
Design Pattern
This design pattern is used to represent the collection of
housekeeping data from the client when an event occurs.
When a request for a particular housekeeping data occurs in
the form of an external event, this design pattern collects the
information.

4.8. Housekeeping Data Checks Multicast
The housekeeping data checks design pattern performs certain
checks on the housekeeping data at regular intervals and
multicasts the messages to various components.

4.9. Spacecraft Clock Multicast Design
Pattern
 This pattern is used to send time signals to the Controller and
input and output components of the system.

4.10. Memory Storage Device Watchdog
Design Pattern
The memory storage device in STEREO is EEPROM. The
Memory Storage Watchdog Design Pattern is selected to
check the working of the memory storage device that is the
EEPROM at regular intervals.

These ten design patterns are implemented in IBM Rational
Rhapsody.

5. IMPLEMENTATION
Two design patterns are explained based on the functionality
of STEREO. The UML diagrams built and validated using
IBM Rational Rhapsody.

5.1 STEREO Hierarchical Control Design
Pattern
The Hierarchical Control Design Pattern is selected as the
components in STEREO cannot be controlled by a
Centralized Controller. Also STEREO being away from the
Earth, most of the processing needs to be done in the satellite
itself. So different subsystems have been identified and each

International Journal of Science and Engineering Applications (IJSEA)
Volume 2 Issue 4,2013, ISSN-2319-7560 (Online)

74

WWW.IJSEA.COM

Figure 1 Object Model Diagram for Hierarchical Controller

of the subsystem takes care of the working of the components
under it. This is depicted in the Object Model Diagram of the
Hierarchical Control Design pattern Figure 1.

Each of the components is interconnected to their respective
subsystems by the use of ports. IBM Rational Rhapsody is an
excellent tool to represent the components of the system and
their interconnections using the Component and Connector
view of UML 2.0. The ports act as the interface to enable the
component to interact with the external world. Each of the
ports realizes interfaces which can be Provided interface or
Required interface, which are not shown in the diagram for
readability. The interfaces should be specified as part of the
contract feature of the port.

The stereotypes may be used to identify the components as
Input, Output or IO Component. Next a state chart diagram is
built for each of the components as shown below figure 2,
figure 3 and figure 4.

Next, the executable version of the design pattern involves
potentially adding application specific states, actions, and
activities to the state machines based on the application’s
features. For example, if the application features refine some
behavior, then this can be modeled as sub-states. Also, if the
component must send a message to an application specific
variant or if application specific logic is required then this is
modeled as an action or activity within a state or transition.

Figure 2 State chart diagram for Output component

Figure 3 State chart diagram for IO Component

International Journal of Science and Engineering Applications (IJSEA)
Volume 2 Issue 4,2013, ISSN-2319-7560 (Online)

75

WWW.IJSEA.COM

Figure 4 State Machine for Star_Tracker_IC

5.2 Memory Storage Watchdog Design
Pattern
The Watchdog design pattern (Douglass 2003) is a
lightweight design pattern to improve system reliability by
making sure the processing is going as expected. This design
pattern is included because it provides a lightweight approach
to providing reliability. This pattern ensures the reliable
working of the memory storage device that is EEPROM.

When the process is going as expected, the Watchdog receives
stroking messages from the component it is monitoring. If it
does not receive a stroking message within a given amount of
time, the watchdog assumes a fault has occurred and sends out
an alarm.

The FSW Memory Storage Device Watchdog Executable
Design Pattern contains the components necessary to monitor
the memory storage device for faults. The components and
their behavior are common at the FSW and thus there are no
SNOE specific customizations to this design pattern.

A watchdog, used in common computing parlance, is a
component that watches out over processing of another

component. In SNOE Watchdog is used to check the memory
storage device for faults. Its job is to make sure that nothing is
obviously wrong, just as a real watchdog protects the entrance
to the henhouse without bothering to check if in fact the
chickens inside are plotting nefarious deeds. The watchdog
ensures that the memory storage device works properly. It
checks the device and its functionality in predefined intervals.

The simplicity of the Watchdog Pattern is apparent from
Figure 5. The Actuator Channel operates pretty much
independently of the watchdog, sending a liveness message
everyso often to the watchdog. This is called stroking the
watchdog. The watchdog uses the timeliness of the stroking to
determine whether a fault has occurred.

 Actuation Channel

This is the channel that contains components that perform the
end-to-end actuation required by the system. "End-to-end"
means that it includes the sensing of control signals from
environmental sensors, sequential or parallel data processing,
and output actuation signals. It contains no components in
common with the Watchdog.

 Actuation Data Source

The Actuation Data Source is the source of sensed data used
for control of actuation.

 Actuator

The Actuator actor is the actual device performing the
actuation.

 Data Transformation

As in the other patterns, these components process the sensing
data in a sequential fashion to compute the ultimate actuation
output. This can be done with a single datum running all the
way through the channel before another is acquired or with
multiple data in various stages of processing simultaneously
to provide a serial or parallel Actuation Channel, respectively.

Figure 5 Object Model Diagram of Watchdog Design Pattern

International Journal of Science and Engineering Applications (IJSEA)
Volume 2 Issue 4,2013, ISSN-2319-7560 (Online)

76

WWW.IJSEA.COM

 Sensor Input Processing

The Sensor Input Processing component is a device driver for
the Actuation Data Source actor. It performs any initial
formatting or transformations necessary for the particular
Actuation Data Source sensor.

 Integrity Checks

This component is (optionally) invoked on every valid stroke
of the Watchdog. This can be used to run a periodic Built In
Test (BIT), check for stack overflow of the tasks, and so on.

 Output Processing

This is a device driver for the Actuator actor. It performs any
final formatting for transformations necessary for the
particular Actuator.

 Timebase

The Timebase is an independent timing source (such as an
electronic circuit) used to drive the Watchdog.

 Watchdog

The Watchdog waits for a stroke event sent to it by the
components of the Actuation Channel. If the stroke does occur
within the appropriate timeframe, the Watchdog may
command integrity checks to be performed. If it does not, then
it shuts down the Actuation Channel.

Some watchdogs check that the stroke comes neither too
quickly nor too slowly. The statechart for such a time-range
watchdog is shown in Figure 6. For some systems, protection
against a timebase fault is safety-critical. In such cases, it is
preferable to have an independent timebase. This is normally
a timing circuit separate and independent from the one used to
drive the CPU executing the Actuation Channel.

Figure 6 State machine for Watchdog

As mentioned before, if the watchdog is to provide protection
from timebase faults, a separate electronic circuit must supply
an independent measure of the flow of time. This means an
independent timing circuit, usually driven by a crystal, but the
timebase may be driven by an R-C circuit. Note, however,
that the watchdog detects a mismatch between the two timing
sources.

When the watchdog is stroked, it is common to invoke a BIT
(Built In Test) of some kind to ensure the proper execution of
other aspects of the system. These actions can either return a
Boolean value indicating their success or failure, or may
directly cause the system to shut down in the case of their
failure. For example, the watchdog may execute an action on
the evStroke transition (see Figure 6) that checks for stack
overflow and performs CRC checks on the executing
application software. If it does a similar check on the
application data, it must lock the data resources during this
computation, which can adversely affect performance.

When watchdog fires because it hasn't been stroked within the
specified timeframe, it invokes some safety measure,
normally either shutting down the system or causing the
system to reset.

Similarly, the Object Model Diagrams and state machines for
all the identified design patterns are developed and validated.

6. RESULTS
This paper validates the design patterns using the tool IBM
Rational Rhapsody. Rational Rhapsody generates the code for
the design patterns and validates the design patterns using
‘build’ option. Thus the functionality of design patterns can be
verified during the design phase and thus reduce the number
of anomalies in flight software. This validation of design
patterns for functional correctness was not possible in static
UML diagrams using UML 1.0. Rational Rhapsody also
enables the animation of statecharts by generating events to
check the behavior of the component. The figure 7 is an
example of animated statechart of client component where the
bright colored state indicates the present state of the
component after the requestNeeded event is generated. Events
can be generated manually while executing the state charts
and thus transitions between the states can be checked. There
by ensuring about the functionality of the components.

Figure 7. Animated State Chart for Client

Thus the functionality of every component in the design
pattern can be validated to build an error free Architecture.

7. CONCLUSIONS
 This paper uses generic architectural design patterns in the
DRE domain to build the architecture of a satellite. The
design patterns are customized to suit the functionality of the
satellite and are also validated to reduce the risk of errors
occurring after implementation. Also the design patterns are
made executable to be used in the future for any other DRE
domain.

International Journal of Science and Engineering Applications (IJSEA)
Volume 2 Issue 4,2013, ISSN-2319-7560 (Online)

77

WWW.IJSEA.COM

8. FUTURE ENHANCEMENTS
This paper can be extended by including the performance
validation. Also various other options of Rhapsody can be
used to better represent the functionality and performance of
design patterns.

9. REFERENCES
[1] H. Gomaa. 2005. Designing Software Product Lines

with UML: From Use Cases to Pattern-Based Software
Architectures, Addison-Wesley Object Technology
Series.

[2] Julie Street Fant, Hassan Gomaa, Robert G. Pettit. 2011.
Architectural Design Patterns for Flight Software, 14th
IEEE International Symposium on
Object/Component/Service-Oriented Real-Time
Distributed Computing Workshops.

[3] D. Harel. 1997. Executable object modeling with
statecharts, 18th International Conference on Software
Engineering.

[4] B.Bharathi, Dr.D.Sridharan. 2009. UML as an
Architecture Description Language, International Journal
of Recent Trends in Engineering.

[5] Software Architecture Description & UML Workshop,
Hosted at the 7th International Conference on UML
Modeling Languages and Applications <<UML>> 2004,
October 11-15, 2004, Lisbon, Portugal.

[6] Clements. P. 2002. et.al.: Documenting Software
Architectures, Views and Beyond, Addison-Wesley,
Boston, MA, USA.

