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Abstract: Inthe present paper we have considered the map ),(),( 2
xbayyyxW −+=   where �, � are parameters. The map was 

originally proposed by Maynard Smith [17] for study of population growth. We have shown how chaos creep into the model. We have 

used the techniques of Lyapunov exponent, time series analysis, Fourier spectra, Bifurcation diagram, correlation and embedding 

dimension etc. to draw our conclusions.  Further, we have shown how the ‘periodic proportional pulse’ method can be used to control 

the chaos generated in the system. 

 

Keywords: Chaos, Lyapunov exponent, Bifurcation diagram, Chaos control, Correlation dimension, Embedding dimension 

 

1. INTRODUCTION 
Over the past few decades, following the discovery of chaotic 

behavior in deterministic nonlinear dynamical systems, there 

has been considerable interest in the study of nonlinear 

differential equations and nonlinear difference equations with 

applications ranging across physics, chemistry, biology, 

economics etc. In many of these studies a knowledge of the 

properties of simple one and two dimensional maps such as 

the logistic map, the dissipative standard map, the Lorentz 

map, the Henon map, the tent map, the quadratic map etc. has 

provided fundamental insights [1, 2, 3, 8, 9, 16]. This has 

been particularly the case in understanding deterministic 

chaos, understanding various routes for transitions to chaos as 

a control parameter is varied, and identifying universality 

classes for the onset of chaos similar to universality in the 

theory of critical phenomena.  

It is well known that discrete models exhibit chaos more 

readily than their continuous counterparts. For instance, 

chaotic dynamics is possible for discrete models of even a 

single species, but require at least three variables in 

continuous time.    

Chaotic behavior, sometimes, is a desirable result, for 

example in the case of random number generator, fluid mixing 

etc. Often, however, it is not. An erratically oscillating 

machine may cause significant damage to itself and 

surrounding infrastructure. Moreover, since the chaotic region 

for a system may contain many possible orbits, being able to 

select between several of these by changing control 

parameters allows multiple responses from the same system. 

Thus, it is oftenuseful to stabilize a chaotic orbit to one that is 

regular and predictable. Chaos control explores the intrinsic 

richness of the chaotic behavior by stabilizing unstable 

periodic orbits embedded in a chaotic attractor.   

 

2. THE MAP : 
Discrete models of density-dependent population growth have 

attracted much attention as examples of simple dynamical 

systems displaying extremely complicated dynamics. These 

simple models describe the growth of a population with non-

overlapping generations by an equation of the form���� �
	
���, where�� is the population size at time � and 	 is some 

suitably chosen function.  This leads naturally to the study of 

maps of an interval into itself and, following the work of Li 

and Yorke [25] and May [20] families of one dimensional 

maps with a single turning point have been extensively 

studied.  

Generalizations of these models take the form of higher 

dimensional mappings. Notable examples in two dimensions 

being the density-dependent Leslie models of Guckenheimer 

et al. [10], and the delayed logistic equation considered by 

Aronson et al. [4] to name a few.  

We consider the map

�, �� � 
�, �� � � � ��� where�, �  

are parameters.  

The model was originally proposed by M. J. Smith [17] who 

derived the following relationship for the growth of a species 

with egg and adult age classes 
� � 1� � ��
�� �
��
� � �� � ���
� � ��. Here �
�� denotes the size of the 

adult population at time  ; � is the time taken for an egg to 

develop into an adult;� � 
0,1�  is the probability that an adult 

at time�  survives to time� � 1 ; � � 0  is the number of eggs 

laid per adult per unit time which in optimal conditions (i.e. 

low �
��� survive to become adults; and � � 0  represents a 

density-dependent constraint on the fecundity of the adults. In 

fact � is simply scaling factor which is removed by the change 

of scale � �/� , so that  

)()()()1( 2
ττ −−−+=+ nxnbxnaxnx

 

We introduce new variables  

)(...,),1()(),()( 121 nxxnxnxnxnx =+−=−=
+τττ

 

to obtain, in the usual way, a map of the phase space sending 

��
��to��
� � 1�, 1 �  � � � 1 

11: ++
→

ττ
RRF

 

),...,,()...,,,(:
2

11112121 xbxaxxxxxxF −+=
+++ τττ

 

If� � 0, this gives the function!
�� � 
� � ��� � ��   which 

is equivalent, by a linear coordinate change, to the quadratic 



International Journal of Science and Engineering Applications (IJSEA) 

Volume 2 Issue 2, 2013, ISSN - 2319-7560 (online) 

www.ijsea.com  27 

family	"
�� � #�
1 � �� considered by May [17] as a simple 

population model.  

Our interest is in the case � � 1  , where we have  

),(),(
2

112221 xbxaxxxxF −+=
,  

or after a translation of coordinates  

2/bxx ii −→
, 

)
~

,(),(
2

12221 xbaxxxxF −+=
 , 

where  

242

~ 2
bbab

b −+=

 .   

Renaming the coordinates�� � � , �� � � and also by writing 

�$ � � , we obtain the map we shall study in detail, viz.  

),(),( 2
),( xbayyyxF ba −+=

. 

We will simply write !, instead of!
%,&� remembering that the 

behavior of the map will depend on the parameters � and�. 

We will investigate the behavior of this map by fixing one 

parameter and varying the other one. 

2.1 Further Reason for the parameter ' to 

have the largest value 1 : 
The map can be written as���� � ������ � � �� � � � ��� 

So,      ���� � ���� � 
� � 1��� � � � ��� � (
��, ��� 

 For extreme values of(
�, �� we must have()
�, �� � 0 and 

(*
�, �� � 0  from which we get the two conditions� � 0  

and � � 1. Thus to have an extreme value of the difference of 

the 2nd population and 1st population we must have� � 1 and 

then the point of extremum becomes the point of maxima. The 

maximum value of the difference of population is calculated 

to be equal to �. Since maximum difference is obtained 

at� � 1, so a boundary crisis occurs at this parameter value 

and the trajectories goes off towards ∞− . The boundary 

crisis can be verified by the bifurcation diagram which 

suddenly ends at � � 1 and also by the occurrence of 

overflow in the calculation of iterative values of the 

populations. So in our following discussions we will vary � 

from 0 to 1 and choose � � 0.6. 

2.2 Range for dissipative, conservative and 

area expanding case  :  

The Jacobian matrix is -� � . 0 1
�2� �0.  So,123-� � 2�, a 

variable. The fixed points of the map are given by the 

equations� � �  and�� � � � �� � �.  So, the fixed points 

are given by ��,�
4 � %5�67
�5%�8�9&

�  

   

Thus the fixed points are 
��
4 , ��

4�and
��
4 , ��

4� and the map 

has no fixed point if  

.)1(
4

1 2
ab −−<

 

For dissipative, conservative and area expanding cases we 

must have|123 -�| ; 1,|123 -�| � 1   and|123 -�| � 1  at the 

fixed point respectively.  

That is, the map is  dissipative if|�| ; �
�,  conservative if 

|�| � �
� and area expanding if|�| � �

�. Thus the map can be 

dissipative, conservative or area expanding depending on the 

initial condition or starting point. 

Again the map is dissipative when|123 -�|  at the two fixed 

points 
��
4 , ��

4� and
��
4 , ��

4�are also less than
�
�, which gives 

two condition � ; 0.3 or � � 1.7. But since the largest value 

of the parameter for the map is� � 1  so we need to discard 

the condition� � 1.7. Thus the map is dissipative when the 

magnitude of the first species is less than 
�
� and the probability 

of an adult at time � to survive at time � � 1 is less than 0.3.  

Similarly the map is conservative if the magnitude of the first 

species is equal to 
�
� and the probability of an adult at time � 

to survive at time� � 1 is equal to 0.3, area expanding if the 

magnitude of the first species is greater than
�
�  and the 

probability of an adult at time�  to survive at time� � 1  lies 

in the interval
3,1>. 

2.3 Regions in which the fixed points are 

stable, unstable or saddle : 

Here-� � . 0 1
�2� �0.   So?@
-�� � �, 123
-�� � 2�.  

Fixed points are
��
4 , ��

4� and
��
4 , ��

4� where   

��,�
4 � %5�67
�5%�8�9&

� . 

There is no fixed point if� ; � �
9 
1 � ���   A fixed point is  

stable if      |?@
-��| ; 1 � 123
-�� ; 2,   

unstable if  |?@
-��| ; |1 � 123
-��| , |123
-��| � 1 

and saddle if  

|?@
-��| � |1 � 123
-��|, �?@
-��� � 4123
-�� � 0 

at the fixed point . 

The fixed point
��
4 , ��

4� is stable when� ; 0.3, unstable 

if� � 0.3  but is never a saddle fixed point because otherwise 

it will lead to an inequality7
1 � ��� � 4� ; 0, which is 

absurd for our chosen set of parameter values. 

Similarly the fixed point 
��
4 , ��

4� is unstable if �
3� � 2� ;
3.4, saddle if�
3� � 2� � 3.4 but is never a stable fixed point 

because in this case also we get an absurd inequality. 

 

3. EXPONENTIAL DIVERGENCE IN 

THE TRAJECTORIES FOR SLIGHTLY 

DIFFERENT INITIAL CONDITIONS: 
To show that the map we have considered is sensitively 

dependent on initial conditions, we plot two trajectories (x-

time series) for two slightly different initial conditions. For 

the first trajectory we have taken the initial condition as 

�
0� � 0.5, �
0� � 0 (the continuous picture) and for the 

second one we have taken ��
0� � 0.5 � 105C, ��
0� � 0 �
105C (the dotted picture). We have drawn the picture for� �
0.6 and  � � 1  As in dynamical system, we are interested in 

the long term behavior, we have depicted the trajectories after 

large number of iterations, neglecting the first 2450 iterations. 

The figure shows the two trajectories which starts from almost 

same points diverge exponentially.  
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This verifies that the map under consideration is sensitive to 

the initial conditions and hence there is every possibility that 

the map may have chaotic behavior for some parameter 

values. 

 

Fig-1: x-time series plot for � � 1, � � 0.6 

4. QUASI-PERIODIC ROUTE TO  

    CHAOS:  
In the quasi-periodic scenario, the systems begins with a limit 

cycle trajectory. As the control parameter is changed, a 

second periodicity appears in the behavior of the system. This 

bifurcation event is the generalization of Hopf bifurcation. So, 

it is also called a Hopf bifurcation. In terms of characteristic 

multipliers, the Hopf bifurcation is marked by having the two 

complex-conjugate multipliers cross the unit circle 

simultaneously [21].  

At the parameter value� � 0.3, the two complex conjugate 

eigen-values at the fixed point ��
4 � 
%5���7
�5%�8�9&

�  assumes 

the magnitude one. For� ; 0.3, the magnitude of the same 

remains less than one but as soon as � crosses the value 

� � 0.3, the magnitude becomes greater than one and this 

confirms the occurrence of Hopf bifurcation at� � 0.3  and in 

turn confirms the quasi-periodic behavior which begins at 

� � 0.3. 

The quasi-periodic behavior which to the eye appear to be 

very similar to the chaotic behavior can be identified using the 

concept of Lyapunov Exponent. For periodic behavior the 

maximal lyapunov exponent (LMax) is negative, for quasi-

periodic behavior LMax is zero and for the chaotic behavior 

LMax is positive quantity. But lyapunov exponent is the 

estimation of the exponential divergence of the trajectories 

when the number of iterations tends to ∞. and it is not 

possible to estimate it numerically using computer algorithm 

to find the limit values and hence we use large number of 

iterations to estimate LMax. In the table below we enlist the 

value of LMax for different number of iterationsat the 

parameter value� � 0.3. 

 

 

 

 

 

 

 

Table-1 

No. of iterations Value of LMax 

5000 -0.000764118 

10000 -0.000464176 

15000 -0.000351312 

20000 -0.000225448 

 

From the above table, it is found that LMax increases as the 

number of iterations increase and the values converge towards 

the value 0, which ensures that the map exhibits quasi-

periodic behavior at� � 0.3. For � � 0.2, LMax is found to 

be�0.029162  which is negative and is an indication of 

periodic behavior. For� � 0.96, LMax is found to 

be0.0305744 which is positive and indicates the chaotic 

behavior. Below we have shown the “LMax Vs the 

bifurcation parameter” diagram in steps of 0.02. 

 

Fig-2: LMax Vs. Parameter “a” 

Thus from the above discussion it is again confirmed that our 

map follows the quasi-periodic route towards chaos. This 

route can also be verified by the bifurcation diagram, phase-

portrait, time-series plot, fourier-spectra, new-indicator 

diagram. 

 

4.1 Bifurcation diagram and attractor or 

phase-portrait : 
Below, we have shown the bifurcation diagram for� � 0.6. 

Here the value of � goes from 0 to 1. Further, we have drawn 

the attractor for the map at the parameter values � � 0.6and 

� � 0.5.  
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n

 1.0

 0.5

0.5

1.0

1.5
xn



International Journal of Science and Engineering Applications (IJSEA) 

Volume 2 Issue 2, 2013, ISSN - 2319-7560 (online) 

www.ijsea.com  29 

 

 Fig 3: Bifurcation diagram of the map for b=0.6 

 

 

Fig-4: Phase-portrait for b=0.6 and a=0.5 

The diagrams reflect the quasi-periodic behavior because in a 

quasi-periodic case, the attractor looks like a closed loop but 

actually the loop is disconnected which can be seen in this 

case by enlarging the above figure. The important point is that 

the attractor for the system is a two dimensional surface of a 

torus for quasi-periodic behavior [21] 

 

 

Fig-5: Enlargement of fig-4 showing disconnected loop 

4.2 Time series and Fourier Spectra: 
Below we have shown the x-time series for � � 0.6 and  

� � 0.5. From the x-time series plot it is observed that the 

system is not exactly periodic but close to periodic which is 

quasi-periodic. Further, we have shown the Fourier spectra 

which also substantiate our claim. 

Fourier analysis lets us determine the frequency content of 

some signal. If the signal is periodic or quasi-periodic, then 

the Fourier spectra will consist of a sequence of “spikes” at 

the fundamental frequencies, their harmonics and the 

frequencies that are the sums and differences of various 

frequencies. The crucial point is that that the spectrum will 

consist of a discrete set of frequencies. However, if the signal 

is non-periodic (for example, chaotic), then the Fourier 

spectra will be continuous. Thus, the sudden appearance of a 

continuous power spectra from a discrete spectrum, as some 

parameter of the system is changed, is viewed as an indicator 

of the onset of chaotic behavior [21].  

Fourier analysis is a powerful tool which indicates the main 

(or all) frequency (-ies) from which a periodic time series  

(i.e. function, signal, trajectory) consists of. A Fourier 

spectrum is a diagram, whose horizontal axis represents the 

frequency and the vertical one the amplitude of each of the 

frequencies. In fact, a Fourier spectrum decomposes a time 

series in its component frequencies and shows signature at 

one (or more) fundamental frequency and at integer multiple 

(harmonics) of that, which may be infinite. In the case that our 

signal is periodic, its Fourier spectrum will consist of one 

fundamental frequency and all the harmonics of it. When the 

signal is quasi-periodic its spectrum will consist of two (at 

least) fundamental frequencies, whose ratio is an irrational 

number, and all of their harmonics. So, in these two cases 

spectrum will consist of discrete signatures. When the signal 

is chaotic the spectrum will show signatures at more than one 

fundamental frequencies and moreover a continuous 

background will emerge in the diagram. 

 

 

Fig-6: x-time series for � � 0.5, � � 0.6 showing the quasi-

periodic behavior 
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Fig-7: Fourier spectrum for � � 0.5, � � 0.6 corresponding to 

Quasi-periodic behavior 

 

Fig-8: Fourier spectrum for � � 1, � � 0.6 corresponding to 

Chaotic behavior 

 

4.3 A proposed New indicator diagram [13]     

      to show periodic, Quasi-periodic and  

      Chaotic behavior : 
A well known route to chaos is the quasi-periodic route which 

was proposed by Ruelle and Takens 1971;  Kaneko 1986, [2, 

9, 19, 21] where the dynamics of the system initially undergo 

a bifurcation from a stable equilibrium point into periodic 

oscillations. As the control parameter is varied further, 

successive (Hopf) bifurcations introduce new fundamental 

frequencies to the motion. If these frequencies are 

incommensurate, quasi-periodic fluctuations are obtained, 

where the trajectory densely cover the surface of the attractor 

in the phase space, in this case referred to a torus. Otherwise, 

frequency locking is observed where the trajectories close 

after a finite number of cycles. Further variations in the 

control parameter cause perturbations that drive the system 

into chaos, breaking down the torus into strange attractor. For 

this reason, the route is also referred to as the torus breakdown 

route  [19].    

Below, we have shown the attractor for� � 0.6  and � � 1  

To show that the above attractor is chaotic, we plot  the 

proposed new indicator diagram [13], where we plot the 

largest eigen-value in magnitude Vs. the iteration number. 

From the proposed new indicator diagram it is observed that 

the eigen-values are arbitrarily placed which assures that the 

system is chaotic for � � 0.6 and  � � 1. 

We can use the proposed new indicator diagram to show 

quasi-periodic behavior also which ascertains that our map 

follows the quasi-periodic route to chaos also. 

 

Fig-9: Attractor for � � 0.6 and � � 1 

 

 

Fig-10: Proposed New indicator diagram for � � 0.6, � � 1 

showing chaotic nature 

5. THE PERIODIC PROPORTIONAL 

PULSE METHOD TO CONTROL 

CHAOS IN TWO-DIMENSIONAL 

DISCRETE MAP: 
Chaotic region for a system may contain many possible orbits, 

being able to select between several of these by changing 

control parameters allows multiple responses from the same 

system. Thus, it is often useful to stabilize a chaotic orbit to 

one that is regular and predictable. Chaos control explores the 

intrinsic richness of the chaotic behavior by stabilizing 

unstable periodic orbits embedded in a chaotic attractor. 

Controlling chaos by various methods are well studied in [5, 

6, 7, 11, 22, 23, 24, 26]. 

In [12, 15], the authors introduced a specific method to have 

control over chaos. In discrete dynamics, the authors applied 

instantaneous pulses on the system variables F�, once every G 

iterations, in the form  

F� � HF�      ( i is a multiple of G)                                   (1) 

where H is a constant. In the case of continuous dynamics, the 

pulses are to be applied to variableF
3�, at regular instants G� 

(� � �I�J3��3 ).  
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In [18], the author re-examined the control of the form (1) in 

more detailed form. In two-dimensional map, the control 

technique is described as follows: 

Consider a two-dimensional discrete system, 

              ���� � 	
��, ���, ���� � K
��, ���                      (2) 

or, F��� � !
F��                                                       (3) 

where F is a vector inL�  and F is a map of a domain 1 M L� 

onto itself. 

To control the dynamics, one needs to apply kick to its orbit 

once every G-steps, by multiplying the x-component of the 

dynamics by a factor H� and the y-component by a factor H�. 

The kicked map is defined as N � O!P, whereO  is a diagonal 

matrix having the diagonal elements as H� andH�.  

A fixed pointFQ  ofN  satisfies the equation, 

         O!P
FQ� � FQ                                                             (4) 

This fixed point FQ is locally stable if, 

The Jacobian of N has two eigenvalues < 1 in magnitude.                        

(5) 

Controlling the dynamics means to find appropriate values of 

H� andH�  so that the kicked dynamics is stabilized at a 

periodic orbit of period-G. For a given period G and a given 

pointFQ, the constantsH� , H�, can be derived from (4), and the 

problem is to test if, with these kicking factors, the condition 

(5) is satisfied. 

5.1 Controlling chaos in our considered 

map: 
Our considered map is,  ���� � �� , ���� � ��� � � � ���  or  

F��� � !
F�� 

where !
�, �� � 
�, �� � � � ��� . 

This map exhibits chaotic behaviour for � � 1, � � 0.6. We 

controlled the map at these parameter values by stabilizing the 

orbit to a periodic point of period-1(i.e. we considered G � 1) 

as follows: 

SinceG � 1, so we have N � O! � 
H��, H�
�� � � � ���� 

We considered the point FQ � 
�Q , �Q� � 
0.1, 0.5�, then the 

Jacobian of  G  at the pointFQ � 
�Q , �Q� is given by 










−
=









−
==

=
22

1

22

1

1
2.0

0

2

0

kk

k

akxk

k
GJacobianG

s
XX s

 

The eigenvalues of N� are given by 

2

8.0 21
2
22 kkkk −±

=
±

λ
                                     (6) 

Again (4) becomes,O!
FQ� � FQ  which after calculation 

gives the values ofH� � 0.2  andH� � 0.45816. With these 

values of H� andH�, using (6) we found the eigenvalues ofN�  

as 0.413881 and 0.0442794, both of which are less than one in 

magnitude and hence we are done.  

Below, we have shown the plot of the time series data for the 

original map with and without control. Here we have activated 

the control at 100th iterate and switched it off at the 200th 

iterate. We also have plotted the new-indicator diagram and 

attractor for the kicked map at the prescribed parameter 

values.  

 

Fig-12: Time series data with and without control (for 

� � 0.6, � � 1) 

 

 

Fig 13: New-indicator diagram for the kicked or the 

controlled map showing a regular pattern i.e. periodic 

behaviour. 

 

 

Fig 14: Attractor for the kicked map showing period-1 

behavior 

6. CORRELATION DIMENSION VS. 

EMBEDDING DIMENSION: 
The goal of determining the dimension of an attractor is that 

the dimensionality of an attractor furnishes information on 
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the number of dominant variables present in the evolution of 

the corresponding dynamical system. A finite, non-integer 

value of the dimension is considered to be an indication of 

the presence of chaos [21]. 

The definition of box-counting dimension is conceptually 

straight forward but it is very difficult to compute practically 

as the number of computations required for the box-

counting procedure increases exponentially with the state 

space dimension. Moreover, the box-counting scheme 

requires us to partition the state space with boxes and then 

to locate the trajectory points within the boxes which is a 

very time consuming process. So to provide a 

computationally simpler dimension for an attractor, 

Grassberger and Procaccia introduced a dimension based on 

the behaviour of a so-called correlation sum (or correlation 

integral) [2, 4, 9]. This dimension is called the correlation 

dimension and has been widely used to characterize chaotic 

attractors. It has a computational advantage because it uses 

trajectory points directly and does not require a separate 

partitioning of the state space. 

For a d-dimensional phase space the correlation function is 

)(
)1(

2
lim)(

,1,

ji

N

jiji
N

d
YYRH

NN
RC −−

−
= ∑

≠=
∞→

 

where H is the Heaviside step function with H(x)=1 for� � 0  

and  H(x)=0 for� � 0, N is the number of points on the 

reconstructed attractor and R is the radius of the sphere 

centered onS� or ST. 

 The correlation functionUV
W� is related to the radius R by 

the relation 

UV
W� � XW5YZ
V� 

Where1[
\� is the correlation dimension which is the slope 

of the log UV
W� verses `IKW plot. That is, 

R

RC
dD

d

NR
c

log

)(log
lim)(

,0 ∞→→

=

 

Here we have calculated the correlation dimensions of the 

map for various embedding dimensions at the parameter 

values� � 0.6 , � � 1 and then plotted the graph of 

correlation Vs embedding dimension. It is seen that the 

correlation dimension is more or less equal to 1.2(non-

integer) for almost all embedding dimensions which indicates 

the presence of chaotic attractor [14]. 

Table: 2 

Embedding dimension Correlation dimension 

1 0.682354 

2 1.03559 

3 1.12072 

4 1.16714 

5 1.17923 

6 1.19052 

7 1.20511 

8 1.20719 

9 1.21716 

10 1.24276 

 

 

Fig-15: Correlation dimension Vs Embedding dimension at 

� � 0.6 , � � 1 

7. MAP WITH SLIGHT  

    MODIFICATION: 
Considering the map W”(x, y) = ( | y |, | ay + b - x^2 | ) i.e. 

considering the absolute values of both the populations, it is 

observed that this system reaches chaos through a mixture of 

universal routes (quasi-periodic, period doubling and period 

un-doubling route). Thus a slight change in the map changes 

the route to chaos. Moreover chaos occurs earlier in this 

modified system than the original map. In the original map 

chaos come into existence after the parameter value 0.95 but 

in this modified map chaos can be observed before the 

parameter value 0.9. This modified map is also more practical 

as because we are dealing with population. 

 

Fig-16: Bif. Diagram for the modified map for b=0.6, a=1 
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Fig-17: Phase plot for the modified map for b=0.6, a=1 
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